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Traumatic brain injury is a major health problem with much of its morbidity associated 

with traumatic axonal injury (TAI). To date, significant insight has been gained into the initiating 

pathogenesis of TAI. However, the specific anterograde and retrograde sequelae of TAI are 

poorly understood because the diffuse nature of TAI complicates data analysis. To overcome this 

limitation, we subjected transgenic mice expressing yellow fluorescent protein (YFP) within the 

visual system to central fluid percussion injury, and consistently generated diffuse TAI within 

the optic nerve that could easily be followed in the organized YFP positive fibers. We 
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demonstrated progressive axonal swelling, disconnection and proximal and distal axonal 

dieback, with regression and reorganization of the proximal swellings, and the persistence of the 

distal disconnected and degenerating swellings. Antibodies targeting the C-terminus of amyloid 

precursor protein, a marker of TAI, mapped to the proximal axonal segments without distal 

targeting. Antibodies targeting microglia/macrophages, revealed activated microglia/ 

macrophages closely encompassing the distal disconnected, degenerating axonal segments at 7 - 

28 days post injury, suggesting their role in the delayed axonal degeneration. In contrast, in the 

proximal reorganizing axonal segments, microglia/macrophages appeared less reactive with their 

processes paralleling preserved axonal profiles. Concomitant with these events, YFP 

fluorescence quenching also occurred, complicating data analysis. This quenching mapped to 

Texas-Red-conjugated-IgG immunoreactive loci, suggesting that blood–brain barrier disruption 

and its attendant edema participated in fluorescence quenching. This was confirmed through 

antibodies targeting endogenous YFP, which identified the retention of intact axons despite YFP 

fluorescent loss. Paralleling these events, TAI was not accompanied by retrograde retinal 

ganglion cell (RGC) death. Specifically, no TUNEL+ or cleaved caspase-3 immunoreactive 

RGCs were observed from 2 days to 3 months post-TBI. Further, Brn3a immunoreactive RGC 

quantification revealed no significant RGC loss. This RGC preservation was accompanied by the 

persistent phospho-c-Jun expression for up to 3 months post-TBI, a finding linked to neuronal 

survival and potential axonal repair. Parallel ultrastructural study again failed to identify RGC 

death. Collectively, this study provides unprecedented insight into the evolving pathobiology 

associated with TAI, and offers advantages for future studies focusing on its therapeutic 

management and neuronal reorganization.  
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CHAPTER ONE 

GENERAL INTRODUCTION 

 

Traumatic brain injury 

Traumatic brain injury (TBI) is a major national and global health problem which leads to 

death and serious neurological dysfunction. According to Centers for Disease Control and 

Prevention (CDC), each year in the United States, approximately 1.7 million people suffer from 

a TBI, resulting in 52,000 deaths, 275,000 hospitalization, and 1,365 million emergency rooms 

visits. The cost of TBI reached $76.5 billion in the United States in 2000 both directly and 

indirectly (Coronado et al., 2012; Finkelstein et al., 2006). Similarly, TBI has the high incidence 

in United Kingdom, Australia, France, Sweden and China (Fearnside  and Simpson, 1997). Both 

males and females are affected by TBI at different ages. These sobering statistics mandate the 

call for intensive research to increase our understanding of TBI while developing therapeutic 

strategies to ameliorate the deficits associated with TBI.  

TBI is acquired when sudden trauma damages the brain. According to CDC, falls are the 

primary cause of TBI, which account for 35.2% of injuries. Motor vehicle accidents involving 

motorcycles, bicycles and pedestrians, compose of 17.3% of total TBI, and they are the biggest 

cause of TBI-related deaths (31.8%).  Other causes originate from blasts (war, terrorism), sports-

related accidents (horseback riding, boxing, football and basketball) (Fearnside  and Simpson, 

1997), suicide, homicide, child abuse, domestic abuse, elder abuse, and natural disasters (Chu et 

al., 2011; Heather et al., 2012; Lee et al., 2003). 
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Pathology of Traumatic Brain Injury 

Most investigators consider the pathobiology of TBI in the context of focal as well as 

diffuse change, with the diffuse pathologies being recognized as the major determinants of the 

adverse outcomes associated with TBI (Povlishock and Katz, 2005). It is accepted that focal 

brain injury is more likely due to direct contact, while the diffuse brain damage is more likely 

caused by rapid acceleration / deceleration of the brain during motor vehicle accidents or falls 

(Graham and Gennarelli, 2000). Focal TBI include cerebral contusion, laceration and 

hemorrhage (Adams et al., 1980; Gennarelli and Thibault, 1985; Granacher RP, 2007; Hardman 

and Manoukian, 2002; Huang et al., 2011; Jamieson and Yelland, 1968; Zimmerman and 

Bilaniuk, 1982). Diffuse TBI refers to non-localized, scattered damage in the brain, including 

diffuse traumatic axonal injury (TAI), diffuse vascular injury (DVI)(Adams et al., 1980; 

Iwamura et al., 2012, Pittella and Gusmao, 2003), diffuse hypoxic-ischemic damage (Dietrich et 

al., 1994; Maxwell et al., 1988 and 1991), and diffuse brain swelling (Aldrich et al., 1992; 

Donkin and Vink, 2010; Jayakumar et al., 2011; Lang, et al., 1994; Liang et al., 2007; 

Marmarow, 2007; Unterberg et al., 2004).  

 Much of the morbidity and mortality associated with TBI are associated with diffuse 

traumatic axonal injury (Christman et al., 1994; Li et al, 2009; Li et al., 2010; Zemlan et al., 

1999). TBI patients who have cognitive impairment, particularly difficulty with memory and 

information processing, typically reveal the evidence of TAI (Lipton et al., 2008), with the 

demonstration of TAI in subcortical white matter, corpus callosum and internal capsule in 

addition to other brain sites (Blumbergs et al., 1989; Graham et al., 2002).  

 

Pathogenesis of Diffuse Traumatic Axonal Injury 
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Diffuse traumatic axonal injury (TAI) presents in the form of damaged axons scattered 

throughout the central nervous system (CNS) (Buki and Povlishock, 2006). Despite traditional 

thought that the diffusely injured axons were torn at the injury moment (Strich, 1956), more 

recent findings do not support this premise. Rather, it has been demonstrated that diffuse 

axotomy is associated with transient focal changes in axolemmal permeability (Pettus and 

Povlishock, 1996), which are related to local calcium dysregulation and subsequent protease-

mediated cytoskeletal disruption (Buki et al., 1999) and mitochondrial dysfunction (Buki et al., 

2000). Together, these events compromise local axonal transport, result in the focal 

accumulation of organelles and proteins with progressive axonal swelling, leading to delayed 

disconnection and downstream Wallerian degeneration (Kelley et al., 2006; Pettus et al., 1994; 

Povlishock, 1992).  

Alteration in axolemmal permeability and calcium dysregulation in TAI 

Traditionally, it has been believed that increased axolemmal permeability is the direct 

result of the shear and tensile injury forces. Early experiments showed that horseradish 

peroxidase (HRP, molecular weight 40kDa), a tracer normally excluded by axolemma, was 

present in injured axons which also revealed local neurofilament compaction and microtubule 

loss as early as 5 minutes post injury (Pettus et al., 1994; Pettus and Povlishock, 1996). These 

findings supported the premise that axolemmal mechanoporation is responsible for this process 

with transient membrane pore formation in the initial pathogenesis of axonal damage. In addition 

to overt local membrane disruption, Kilinc et al (2008, 2009) applied fluid shear stress on 

cultured CNS neurons, and observed an increased flux of Ca
2+

 as early as 5-30 minutes post 

injury, which led to the activation of calpain as well as local axonal beading. Interestingly, these 

events were blocked by Poloxamer 188, a membrane sealing material (Kilinc et al., 2007; 
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Serbest et al., 2005; Serbest et al., 2006), again suggesting that altered axolemmal permeability 

precipitated axonal damage. 

As noted, increased axonal membrane permeability has been linked to an increased 

intracellular calcium ion concentration ([Ca
2+

]i) following injury (Fineman et al., 1993; LaPlaca 

et al., 1998). One explanation of the rise of intracellular calcium is the influx of calcium from the 

extracellular space through the axolemmal pores generated at the moment of injury (Büki and 

Povlishock, 2006; Gennarelli, 1993; Gennarelli et al., 1998). Alternatively, another source for the 

increased intra-axonal ([Ca
2+

]i maybe related to the dysfunction of the calcium store - smooth 

endoplasmic reticulum (SER) and mitochondrial (Nikolaeva et al., 2005; Stys, 2005; Weber et 

al., 1999 and 2001). In vitro studies using the stretch injured cortical neurons, showed that 

[Ca
2+

]i increased rapidly after injury, the neuronal calcium stores did not  respond 15 min after 

injury, which was prevented by phospholipase C (PLC) inhibitor (Weber et al., 1999 and 2001).  

In vitro ischemia of optic nerve axons has also demonstrated that the release of intra-axonal Ca
2+

 

was from the inositol trisphosphate (IP3) receptors and ryanodine receptors on SER, as well as 

the mitochondrial Na
+
/ Ca

2+
 exchanger, all of which were Na

+ 
- dependent (Nikolaeva et al., 

2005; Stys, 2005).  

In addition to calcium influx from the mechanoporation and the calcium release from 

SER and mitochondrial, the observed [Ca
2+

]i  increase following axonal injury may also be 

related to an injury induced channelopathy. Employing an in vitro unmyelinated axonal stretch 

injury model, Wolf et al. (2001) observed an immediate increase in intra-axonal calcium after 

injury that was completely reversed by either tetrodotoxin(TTX) - the sodium channel blocker, 

ω–conotoxin MVIIC, a voltage-gated calcium channel(VGCC) blocker, or bepridil, a blocker of 

the Na
+
- Ca

2+
 exchanger also participate in decreasing intra-axonal Ca

2+
. All these studies 
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indicated that mechanically sensitive Na
+
 channels, the VGCCs and the Na

+
- Ca

2+
 exchanger are 

involved in calcium dysregulation. Using the same model, Iwata et al. (2004) observed 

proteolysis of the NaCh α-subunit at 5 and 20 min after trauma, resulting in persistent elevations 

in [Ca
2+

]i. Further, von Reyn et al. (2009) proved that this proteolysis was dependent on Ca
2+

 and 

calpain activity at 6h after mechanical injury, which is relatively late compared to the early loss 

of NaCh (Iwata et al., 2004). Despite the proteolysis, there was no fragment formation or 

internalization, which may contribute to further calcium elevation, subsequent calpain activation 

and probably later axonal degeneration (Iwata et al., 2004; von Reyn et al., 2009). Of note is the 

fact that all the results originating from the stretch injury model employed unmyelinated axons in 

vitro. In vitro, Reeves et al. (2005) showed significant and sustained depression of the compound 

action potentials (CAP) associated with the unmyelinated axon population within the rat corpus 

callosum following fluid percussion injury. This suppression in unmyelinated axons persisted 7 

days post injury, while in myelinated axons the CAP recovered to control levels 7 days post 

injury, suggesting that unmyelinated axons may be more vulnerable to TBI than myelinated 

axons, and that the corresponding pathogenesis mechanism may be different (Reeves et al., 2005;  

Reeves et al., 2007). Further investigation is required to determine whether the mechanically 

sensitive Na
+ 

channels, the VGCCs and the Na
+
- Ca

2+
 exchanger play a role in the pathological 

change of these in vivo unmyelinated axons, similar to those described in the in vitro stretch 

injured unmyelinated fibers.  

Calcium-induced calpain-mediated spectrin proteolysis, microtubule disorganization and 

neurofilament compaction in TAI  
 

Irrespective of the initial causative mechanisms, it is now well appreciated that Ca
2+

 

overloading and subsequent activation of proteases and phosphatases, Ca
2+

 -induced proteolytic 

pathways are pivotal players in the ensuing axonal pathology. Ca
2+

-activated neutral protease, 
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calpain, exclusively cleaves the axonal membrane cytoskeleton protein, spectrin. To date, µ-

calpain and m-calpain have been identified, although no known difference has been found 

between their role in trauma. Physiologically, calpain participates in remodeling of 

cytoskeletal/membrane attachment, cell signaling and synaptic activity (Goll et al., 2003; Wu 

and Lynch, 2006). Calpain breakdown products have been observed in rat axons of damaged 

white matter tracts  following lateral fluid percussion brain injury (Saatman et al., 1996), in rat 

spinal cord from contusion injury (Springer et al., 1997), in rat pyramidal tract and medial 

lemnisci at the level of pontomedullary and cervicolmedullary junction sustaining weight drop 

injury (Buki et al., 1999), in the rat neocortex, subcortical white matter, corpus callosum, 

thalamus and hippocampus sustaining moderate midline fluid percussion injury (McGinn et al., 

2009; Reeves et al., 2010), as well as in mice optic nerves from stretch injury (Saatman et al., 

2003; Serbest et al., 2007).  Besides animal studies, calpain-mediated breakdown of the 

cytoskeleton has also been found in the corpus callosum from patients died of close head injury 

(McCracken et al., 1999). 

In addition to the brain parenchyma, calpain-specific spectrin breakdown products 

(SBDPs), 150kDa and 145kDa fragments were also found to be elevated in cerebrospinal fluid 

(CSF). Specifically, the 145kDa SBDPs were increased in rat CSF following moderate midline 

fluid percussion injury (McGinn et al., 2009). 150kDa and 145kDa SBDPs were found in CSF 

from severe TBI patients (Farkas et al., 2005; Mondello et al., 2010; Pineda et al., 2007). The 

mean SBDP densitometry values obtained shortly after TBI were correlated with the severity of 

injury and the outcome half a year post-injury, suggesting that SBDPs were meaningful clinical 

biomarker of severe TBI patients (Pineda et al., 2007). 
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Of note is the fact that the calpain mediated spectrin proteolysis (CMSP) has been 

identified in the subaxolemmal domain as early as 15min post injury, and then transferred to the 

axoplasm proper at 30-120 min post injury, supporting the role of local CMSP in the 

pathogenesis of DAI (Buki et al., 1999). Interestingly, Saatman and coworkers (2003) observed 

biphasic calpain activation in traumatic injured axons in mice optic nerve after stretch injury. 

Calpains were acutely activated in the first 20 minutes to hours post injury, followed by a 

delayed phase of calpain-mediated proteolysis at 4 days post injury possibly participating in 

axonal degeneration and neuronal death (Saatman et al., 2003). 

Further evidence to support the involvement of calpain is found in the protective function 

of calpain inhibitors in attenuating axonal damage. For example, calpain inhibitor CEP-4143, 

given before spinal cord injury,  inhibited calpain activation, decreased neurofilament NF200 

dephosphorylation, attenuated axonal damage, and improved  behavior (Schumacher et al., 2000). 

Similarly, the calpain inhibitor SJA6017, when administered at 20 min or delayed to 4 h post 

injury, improved mice functional outcome after diffuse brain injury (Kupina et al., 2001). Lastly, 

the calpain inhibitor MDL-28170, when given intravenously before an impact acceleration TBI, 

also reduced the number of damaged axons in the rat brainstem (Buki et al., 2003). 

In addition to calpain-mediated spectrin proteolysis, calpain can  also proteolize tubulin, 

GAP-43, microtubule-associated proteins (MAP), such as MAP1A, MAP1B and MAP2 

(Saatman et al., 1998; Saatman et al., 2010; Taft et al., 1992; Thompson et al., 2006). Calpain 

also cleaves tau protein and generates a toxic 17-kDa tau fragment in cultured hippocampal 

neurons (Park et al., 2005).  

Calpain also mediates degradation of neurofilaments. For example, in the corpus 

callosum, NF200 and NF68 were found to be decreased in head-injured patients compared to 
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control patients (McCracken et al., 1999; Saatman et al., 1998). Serbest et al (2007) also 

observed the decrease of NF200 and NF68 in the mice optic nerve following stretch injury. 

In addition to the above calpain-mediated events, Ca
2+

 can also activate calcineurin, 

which dephosphorylates both neurofilament (NF) subunits and microtubule associated protein-

tau, thereby altering the interaction between adjacent NFs and between NFs and microtubules 

(Mata et al., 1997). Consequently, the repelling forces between the NF side-arms are decreased, 

resulting in neurofilament compaction (NFC), disrupting the organization of microtubules, and 

compromising axonal transport (Buki and Povlishock 2006; Mata et al., 1997; Okonkwo et al., 

1998). Neurofilament dephosphorylation was also observed in the optic nerve following stretch 

injury (Saatman et al., 2003). Okonkwo et al. (1998) showed that NFC was spatially and 

temporally correlated with intra-axonal calpain-mediated spectrin-proteolysis (CMSP). NFC was 

also observed in optic nerve stretch model (Maxwell et al., 2003).  

Collectively, the increased intra-axonal calcium promotes spectrin-proteolysis, disruption 

of microtubules and neurofilament compaction.  

Mitochondrial damage in TAI  
 

Concomitant with above changes, local mitochondrial swelling has been observed in the 

injured axonal segment in diffuse TBI models (Büki et al., 1999; Büki et al., 2000; Büki and 

Povlishock, 2006; Povlishock et al., 1997; Wang et al., 2011). Mitochondria also are found to 

accumulate abnormally in swollen axonal segments in cultured primary chick forebrain neurons 

following fluid shear stress injury (Kilinc et al., 2008). In a rat lateral head rotation model, 

axonal damage was observed in medulla oblongata, associated with Ca
2+

 overloading with many 

axons revealing an abundance of Ca
2+

 associated  with swollen mitochondria (He et al., 2004). 

These findings suggest that Ca
2+

 overloading by itself may lead to mitochondrial dysfunction. 
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Physiologically, the level of total mitochondrial calcium within neurons is approximately 

0.1 mM and the level of free mitochondrial calcium approximates 100 nM (Babcock and Hille, 

1998; Pivovarova and Andrews 2010; Pozzo-Miller et al., 1997). When stimulated, mitochondria 

accumulate large amounts of calcium (Montero et al., 2000; Pivovarov et al., 1999), which 

maybe mediated by the mitochondrial ryanodine receptor, the mitochondrial uncoupling proteins, 

the Letm1 Ca
2+

/H
+
 exchanger, as well as the mitochondrial Ca

2+
  uniporter (MCU) and its Ca

2+ 

sensing regulatory subunit MICU1(Pan et al., 2011). Mitochondria release Ca
2+

 primarily by 

Na
+
/Ca

2+
 exchanger (Crompton and Costi, 1978; Nicholls, 2005) and Na

+
/H

+
 exchanger 

(Nicholls, 2005; Starkov, 2010). Normal oscillation of Ca
2+

 in mitochondria participates in ATP 

production, axonal transport, excitability and synaptic transmission (MacAskill et al., 2010; 

Pivovarova and Andrews 2010; Starkov, 2010). However, when Ca
2+

 overloading is so severe, it 

depolarizes mitochondria, opening mitochondrial permeability transition pores (MPTP), resulting 

in neuronal degeneration (Bezprozvanny, 2009) as well as axonal damage. Further, this axonal 

damage was attenuated by agents providing mitochondrial protection via their targeting of 

MPTP. Specifically cyclosporin A (CsA) and FK506 have been shown to preserve mitochondria, 

attenuate axonal injury and improve axonal function (Büki et al., 1999; Marmarow and 

Povlishock, 2006; Okonkwo and Povlishock, 1999; Reeves et al., 2007; Singleton et al., 2001). 

Although the exact molecular components of MPTP are unclear, several different 

components have been identified, including cyclophilin D (CyP-D),  adenine nucleotide 

translocator (ANT), the mitochondrial phosphate carrier (PiC), and the voltage-dependent anion 

channel (VDAC) (Halestrap, 2009; Leung and Halestrap, 2008). As noted previously, the 

opening of MPTP is triggered by mitochondria matrix Ca
2+

.  The addition of Ca
2+ 

in vitro has 

been shown to open the MPTP while Ca
2+

 chelation can induce the closure of MPTP (Crompton 

http://www.jneurosci.org/content/31/3/966.full#ref-24
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et al., 1987; Crompton and Costi, 1988 and 1990; Haworth and Hunter, 1979).  This Ca
2+

 

triggered MPTP opening was facilitated by cyclophilin D, a matrix peptidyl-prolyl cis–trans 

isomerase (PPIase) (Connern and Halestrap, 1992; Johnson et al., 1999).  CsA and its analogues 

bind to cyclophilin D and inhibit MPTP opening (Griffiths and Halestrap, 1995; Waldmeier et 

al., 2002), without interfering with the activity of calcineurin.  

The opening of MPTP and subsequent mitochondrial depolarization can also be induced 

and/or facilitated by free radicals (Brustovetsky et al., 2003) as well as the activity of proteinase, 

calpain (Aguilar et al., 1996).  Besides cytosolic calpain, there have also been reports that 

mitochondrial calpain is involved in mitochondrial dysfunction. Arrington et al (2006) reported 

that calpain 10, a mitochondrial calpain, could cleave Complex I subunit NDUFV2 and ND6, 

activate MPTP, and result in mitochondrial dysfunction, which were blocked by calpain 

inhibitors.  

Upon the opening of MPTP, Ca
2+

 influx becomes unregulated, resulting in mitochondria 

depolarization. Concomitantly, water is drawn in by the colloidal osmotic pressure, related to the 

high concentration of proteins and Ca
2+

 within the mitochondrial matrix. Collectively, this leads 

to mitochondrial swelling and dysfunction (Halestrap et al., 1998; 2004; Halestrap and Pasdois 

2009). 

Ultimately, the failure of mitochondrial function results in local bioenergetic deficiency 

together with impairment of local axonal transport. Ahmed and coworkers (2000) reported that 

mitochondrial membrane potentials decreased in cultured neurons 15 min after severe stretch 

injury, and ATP content declined 22–28% in mixed cultures of neuron and astrocytes 15 min 

following stretch. N-Acetylaspartate (NAA), which is synthesized by the mitochondria, was 
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reduced gradually based on the severity of the impact acceleration insult on adult rats (Signoretti 

et al., 2001).  

Activation of the caspase cascade and corresponding cytoskeletal damage in TAI  

 

Following the MPTP formation and the subsequent mitochondria dysfunction, the 

apoptosis activating factor, cytochrome-c and caspase enzymes are released into the axonal 

cytosol, activating the caspase cascade in the traumatically injured axonal segments (Buki and 

Povlishock, 2006; Buki et al., 2000). Cytochrome-c release increases parallel to caspase-3 

activation over time after injury (Buki et al., 2000). Caspase-3 cleaves spectrin into 120kDa 

segment (SBDP-120-kDa), the signature protein of caspase-3 activation. SBDP-120-kDa has 

been found to colocalize with cytochrome-c release and calpain activation in severely damaged 

segments, suggesting that cytochrome-c, caspase-3 and calpain are involved in the terminal 

cascade of TAI. Compared to calpain-mediated spectrin proteolysis, which targets the alpha 

chain of spectrin, caspase-3 also degrades the beta chain of subaxolemmal spectrin followed by 

changes in axonal morphology and axolemmal permeability (Buki and Povlishock, 2006; Wang 

et al., 1998).  

Besides the proteolysis of spectrin, active caspase-3 cleaves tau into a 50-kDa truncated 

tau segment (Gamblin et al., 2003), which is different from calpain mediated 17-kDa toxic tau 

fragments. All these truncated tau proteins probably facilitate microtubule disorganization, 

disrupting axonal transport.  

Additionally, it has been reported that caspase-3 also mediates the cleavage of protein 

kinase N 1 (PKN1), which has been recognized to be important in neurofilament organization 

and transport (Manser et al., 2008). Collectively, these findings indicate that activation of 
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caspase-3 may contribute to disrupting NF organization and axonal transport. Thus, caspase-

inhibitors may be a potential therapeutic approach in TAI.  

In sum, following diffuse axon injury, axolemmal permeability increases followed by 

calcium influx. This leads to calcium overloading, which activates proteinase calpain mediated 

spectrin proteolysis and tau cleavage. Also proteolytic NF-sidearm modification or Ca
2+

 -induced 

activation of calcineurin alters the NF-sidearm phosphorylation state, both promotes 

neurofilament compaction. Concomitantly, Ca
2+

 overloading damages mitochondria both 

morphologically and functionally, followed by the release of pro-apoptotic factors which trigger 

caspase mediated proteolysis of spectrin, tau and PKN1. These sequences of events ultimately 

destroy axonal cytoskeleton and disrupt axonal transport.  

Impairment of axonal transport, organelle accumulation and axonal swelling 

As discussed above, in diffuse axonal injury animal and humans suffering from brain 

trauma, calcium-activated proteases calpain and caspase, destroy cytoskeletal proteins tubulin, 

neurofilament polypeptides and spectrin, consequently blocking axonal transport and resulting in 

organelle and protein accumulation, triggering axonal swelling.  

Focal axonal swellings are the morphological hallmarks of altered axonal transport. 

Proteins and organelles, such as β-amyloid precursor protein (APP), mitochondria, microtubules, 

and profiles of smooth endoplasmic reticulum, accumulate in the swollen axonal segment 

(Povlishock and Christman, 1995). The development of axonal swelling is a time-dependent 

process. From initiation up to 1 hour post-injury, some axons show initial focal swellings, some 

containing swollen mitochondria, and others NFs revealing oblique to the axon long axis, 

precipitating impaired axonal transport (Yaghmai and Povlishock, 1992). In 2-3 h following 

injury, axonal swelling continues, with a total blockage of axonal transport in the proximal and 
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distal segments, suggesting focal axonal dysfunction and disconnection (Pettus et al., 1994; 

Povlishock et al., 1983). At 3 h post-injury, most axons appear disconnected with continued 

expansion to form a mature swollen bulb due to accumulation of organelles (Pettus et al., 1994). 

By 12–48 h post-injury, axonal swellings became more mature and expanded with axonal 

disconnection now dominant (Pettus et al., 1994). 

Maxwell and Graham (1997) demonstrated that the sites of microtubule loss correlated 

with the sites of axonal swellings in the stretch injured optic nerve. Further, positive staining of 

antibody specific to kinesin, a motor protein important for anterograde axonal transport, was 

identified in swollen axonal bulbs in all cases of TBI patients of both the short-term survival 

period (mean 64 h post injury) and long-term survival period (mean 245 days post injury) (Chen 

et al., 2009), confirming that these axonal swellings were due to the blockage of vesicles 

transported anterogradely at the injured axonal segment. 

Further evidence of the axonal disconnection is found in the work of Saatman et al (2003) 

who showed decreased retrograde labeling of the RGCs by fluorescent tracer placed in the 

superior colliculi after the optic nerve stretch injury. Utilizing YFP-H transgenic mice, Greer et 

al (2011) observed both proximal and distal axonal swelling in the cerebral cortex after the 

central fluid percussion injury. Greer (2011) showed that the antibodies targeting the C terminus 

of APP labeled only the proximal swollen segment, without labeling of the distal swollen 

segment. Additionally, the proximal APP immunostaining disappeared at 48 hours post injury, in 

contrast to the distal endogenous YFP fluorescence positive swellings which persisted days after 

injury. This disappearance of APP labeling over time could be due to the degradation of APP in 

the injured axonal segment, but the possibility could not be excluded that anterograde axonal 

transport is converted into retrograde transport (Martz et al., 1989; Sahenk and Lasek, 1988). 
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Limitations of current research on the pathogenesis of TAI and new directions 

As noted above, majority of previous studies focused on the initial pathological 

mechanisms associated with TAI, particularly the initiating intraaxonal cellular and subcellular 

mechanisms.  While these studies are important and well established targets for potential 

therapeutic intervention, they have left unaddressed the important consequences of TAI in terms 

of the long term fate of those neurons linked to the TAI as well as the potential for 

anterograde/retrograde dieback of the diffusely damaged axons. This unaddressed information 

will be vital for future studies exploring the potential for regeneration and repair following TAI. 

Accordingly, in following passages, we address what limited information exists in relation to 

these issues in the context of TAI. 

 

Evidence for axonal dieback following TAI 

Axonal dieback is a phenomenon whereby axons retract from the initial site of injury. 

While virtually no information exists on the process of axonal dieback following TAI, some 

comparisons can be drawn from studies of axonal transection.  

Axonal dieback has been reported in spinal cord injury (SCI). Retrograde axonal dieback 

(of the proximal segment) was observed in the rat corticospinal tract (CST) after thoracic spinal 

cord transection (Seif et al., 2007), and similarly, in the mice CST after thoracic SCI (Yoshimura 

et al., 2011). Utilizing time-lapse imaging of green fluorescent protein (GFP) fluorescent axons 

that run superficially in the dorsal spinal cord of living transgenic mice, Kerschensteiner et al 

(2005) observed acute axonal degeneration (AAD) over 200-300µm within 30 minutes. The 

AAD was identical in the proximal and distal axon ends, after transection of selected axons 

mostly originating from the dorsal root ganglion (DRG). In part, the underling mechanism of 
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AAD may be similar to Wallerian degeneration since it was significantly decreased in transgenic 

mice with “Wallerian degeneration slow” mutation (Kerschensteiner et al., 2005). Additionally, 

AAD was blocked by calpain inhibitors, suggesting the involvement of calpain protease in AAD 

(Kerschensteiner et al., 2005). Overtime, the proximal end remained stable, or showed early 

sprouting as early as 6-24 hours after lesion (Kerschensteiner et al., 2005). In contrast, the distal 

end underwent continued Wallerian degeneration (Kerschensteiner et al., 2005). 

Besides the activity of calpain and Wallerian degeneration, axonal dieback after SCI has 

also in part been linked to chronic macrophage activation (Busch et al., 2009; Busch et al., 2010; 

Horn et al., 2008).  Horn and his colleagues (2008) observed spatiotemporal correlation between 

macrophage infiltration and injured ascending dorsal column sensory axon retraction from 7 to 

28 days after injury, which was reduced by administration of liposomal clodronate - an inhibitor 

of macrophage infiltration. Using an in vitro model of macrophage-axon interaction, they also 

demonstrated that there were direct adhesive contacts between activated macrophages and 

dystrophic axons, and that extensive axonal retraction could be induced only when macrophages 

were activated (Horn et al., 2008). Further, Busch and his colleagues (2009) tried several 

methods to attenuate macrophage induced retraction. One approach was through the inactivation 

of matrix metalloproteinases (MMP), specifically MMP-9, while another approach was to 

modify substrate, for example, the digestion of the aggrecan substrate by chondroitinase ABC. 

Both of these two methods have been effective in blocking macrophage-induced axonal 

retraction (Busch et al., 2009). Taken together, it appears now that axonal dieback is a complex 

process, involving chronic macrophage activation and attachment to the dystrophic axons, as 

well as the secretion of MMP and chondroitin sulfate proteoglycans.  
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In addition to macrophage activation, oligodendrocyte and microglia/macrophage death 

(Stirling et al., 2004) and myelin degeneration (McPhail et al., 2004) have also been implicated 

in axonal dieback. Fourteen days after transection of the dorsal columns at the cervical C7-C8 

level, apoptotic oligodendrocytes and microglia/macrophages were observed in the proximal 

descending corticospinal tract (CST) and the distal degenerating, ascending sensory tract (AST) 

(Stirling et al., 2004). Minocycline, which is an anti-inflammatory and neuroprotective 

medication, inhibiting microglial activation (Yrjänheikki et al., 1998), attenuated MMPs 

(Brundula et al., 2002) and inhibited caspase expression (Chen et al., 2000). When administered 

intraperitoneally, minocycline was effective in reducing the number of ED1-positive 

microglia/macrophages within the degenerating axonal segments at 7 d after injury. This strategy 

prevented CST axonal dieback, reducing lesion size, and promoting functional outcome at both 7 

and 14 days after spinal cord injury (Stirling et al., 2004).   

Of note, distinct macrophage subsets, proinflammatory type (M1) and anti-inflammatory 

type (M2), were activated differentially following SCI (Kigerl et al., 2009). Previous studies 

have demonstrated that, by the stimulation of lipopolysaccharide and interferon-γ (IFN- γ), the 

macrophage differentiated into the M1 phenotype, producing nitric oxide, superoxide and other 

proinflammatory cytokines, mediating neuronal death (Block et al., 2007; Kigerl et al., 2009).  In 

contrast, via the stimulation of interleukin-4 (IL-4) or IL-13, the macrophage differentiated into 

the M2 phenotype, promoting axonal growth (Barrette et al., 2008; Kigerl et al., 2009; Yin et al., 

2003; Yin et al., 2006), the phagocytosis of myelin (Vallie`res et al., 2006), and the maturation of 

oligodendrocytes and remyelination (Schonberg et al., 2007). Temporally, the M1 macrophages 

were activated rapidly and were maintained up to 28d post spinal cord injury, while in contrast, 

the M2 macrophages were activated transiently and returned to preinjury levels by 14d post 
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injury (Kigerl et al., 2009).  At the lesion site, the ratio of M1/M2 cells shifted from 

approximately equal at 1–3 dpi, toward an M1 macrophage phenotype dominant phase after the 

first week (Kigerl et al., 2009). This downregulation of M2 macrophage phenotype has been 

linked to the lesion-derived factors in the microenvironment, based upon the fact that the percent 

of M2 phenotype macrophage remained unchanged when injected into intact spinal cord, while 

they became reduced by 20-40% when injected into the spinal cord contusion lesion (Kigerl et 

al., 2009). Interestingly, a shift from M1 to M2 macrophages has been observed in equine tendon 

repair (Dakin et al., 2012),  the healing cutaneous wound site (Deonarine et al., 2007) and the 

healing myocardium (Lambert et al., 2008; Nahrendorf et al., 2007), implicating that inducing 

M2 macrophage formation is a potential therapeutic strategy to promote axonal regeneration and 

CNS repair. Supporting evidence has already existed in preclinical models of SCI employing 

peroxisome proliferator activated receptor (PPAR) agonists, which have been approved by the 

Food and Drug Administration (FDA) to treat diabetes. It has been shown that PPAR agonists 

could also facilitate the differentiation of macrophages into the M2 phenotype through IL-4 

(Odegaard et al., 2007; Villanueva and Tontonoz, 2010), and promote anatomical and functional 

repair after SCI (McTigue et al., 2007).  

Activation of microglia has also been observed in brain injury. Specifically, in a mice 

midline closed skull injury model, which induces diffuse axonal injury in the corpus callosum, 

the activation of different subpopulation of microglia has been observed both acutely and 

chronically (1d - 28d post injury) (Venkatesan et al., 2010). Particularly, some activated galectin-

3/Mac-2 immunoreactive microglia engulfed injured axonal segments, consistent with the role of 

myelin phagocytosis during CNS inflammation (Reichert and Rotshenker, 1999; Venkatesan et 

al., 2010; Walther et al., 2000). At the same time, activated galectin-3/Mac-2 immunoreactive 
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microglia expressed nerve growth factor (Venkatesan et al., 2010), which is believed to have a 

beneficial role, such as promoting neuronal repair, axon sprouting and oligodendrocyte 

proliferation (Althaus et al., 1992; Frielingsdorf et al., 2007; Kromer, 1987; Sofroniew et al., 

2001). However, a detrimental role of nerve growth factor also exists, such as its association with 

oligodendrocyte death (Casaccia-Bonnefil et al., 1996; Frade et al., 1996; Yune et al., 2007). 

Thus, the real function of microglia/macrophage activation in axonal damage is still unclear. 

Specifically, it is required to study whether they are associated with axonal dieback and/or 

axonal regeneration/repair following diffuse traumatic axonal injury.  

 

 

Anterograde degeneration following TAI  
 

Previous experimental animal models of TBI as well as human studies have shown that, 

following axonal damage and disconnection, the downstream distal axonal segments undergo 

Wallerian degeneration, with subsequent deafferentation of the target tissue (Kelley et al., 2006; 

Povlishock 1992; Povlishock et al., 1992). For example, in a rodent model of DAI, the distal 

segment and its related synaptic terminals manifest an increase in electron density and/or 

neurofilamentous hyperplasia, with detachment from their normal target sites within 24-48 hours 

of injury (Povlishock 1992; Povlishock et al., 1992). Such axonal degeneration and 

deafferentation may be linked to the neurological dysfunction and long-term deficits associated 

with DAI.  

However, other data also suggest that this same diffuse deafferentation may set the stage 

for the subsequent sprouting of related intact nerve fibers which may be involved in synaptic 

plasticity (Erb and Povlishock, 1991; Greer et al., 2011) and/or maladaptive modification 

(Phillips et al., 1994; Reeves et al., 2003).  In a feline model of mild to moderate TBI, Erb and 
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Povlishock reported that the post-TBI diffuse pattern of axon terminal degeneration and 

subsequent deafferentation in the dorsal lateral vestibular nucleus was followed by a prolonged 

adaptive recovery process that occurred 2-6 months post injury (Erb and Povlishock, 1991). 

Utilizing the entorhinal cortical lesion model coupled to TBI, a more severe injury paradigm, 

Phillip and Reeves observed maladaptive sprouting of the crossed temporodentate fibers and 

synaptogenesis after the clearance of the axonal debris (Phillips et al., 2001; Reeves et al., 2003).  

Taken together, these results suggest that in cases of diffuse degeneration and deafferentation 

induced by mild/moderate TBI, as opposed to more severe injury, the injured brain may in fact 

harbor a permissive environment for the adaptive sprouting of nerve fibers and resultant synaptic 

input to the previously deafferented targets. 

 

Retrograde effect of TAI on the neuronal cell body 

Again, our understanding of the retrograde consequences of TAI is incomplete. The 

retrograde response of neuronal cell body to axonal injury is influenced by several factors, (1) 

the type of the neuron sustaining axotomy, (2) how the axon is injured, transection (primary) 

versus stretch during acceleration and deceleration (secondary), and (3) the distance from the 

axonal lesion to the neuronal soma. This issue is of direct relevance to the issue of axonal 

dieback, in that if the sustaining neuronal cell body dies, the fate of its downstream axonal 

segment is a forgone conclusion.  

The type of the neuron influences the retrograde response to axonal injury 

The neuronal response to axonal injury is vastly different between the peripheral nervous 

system (PNS) and the central nervous system (CNS). The PNS neuron has the capacity to 

regenerate axons after the peripheral nerve lesion in the growth permissive environment. 
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Postinjury, the morphology of the cell body of axotomized PNS neurons transitions to 

“chromatolysis”, which includes the restructuring of the granular endoplasmic reticulum and the 

lateralization of the nucleus, which are related to mRNA synthesis alteration and protein 

expression modification (Fenrich and Gordon, 2004; Gordon, 1983; Kreutzberg, 1995; 

Kreutzberg, 1996). Evidence exists as to the up-regulation of the cytoskeletal proteins, such as 

tubulin and actin (Tetzlaff et al., 1991), and the growth associated proteins, GAP-43, as well as 

cytoskeleton-associated protein-23 (CAP-23, Bomze et al., 2001), which play an important role 

in growth cone elongation (Bomze et al., 2001; Bulsara et al., 2002; Igarashi et al, 1995; Piehl et 

al., 1998; Strittmatter et al., 1994). The denervated Schwann cells, the glial cells in PNS, 

transition from the myelinating phenotype to the growth supportive nonmyelinating phenotype 

(Hall, 1999). This is associated with a decrease in the expression of the myelin-associated genes 

with an increase in the expression of regeneration associated genes (RAG), which include 

neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), neurotrophin, glial 

cell derived neurotrophic factor (GDNF), truncated receptors and the p75 neurotrophic factor 

receptor (Boyd and Gordon, 2003; Funakoshi et al., 1993; Höke et al., 2002; Ito et al., 1998; 

Meyer et al., 1992; Naveilhan et al., 1997; Seniuk et al., 1992 ). 

In contrast, the CNS neuron does not mount a regenerative response after axotomy. This 

could be due to (1) the insufficient ability of CNS neurons to express RAGs (Fernandes et al., 

1999; Hiebert et al., 2000; Plunet et al., 2002), (2) the inhibitory proteins that expressed by 

oligodendrocytes, such as Nogo-A, oligodendrocyte-myelin glycoprotein (OMgp), myelin-

associated glycoprotein (MAG) (Atalay et al., 2007; Giger et al., 2008; McDonald et al., 2011), 

as well as (3) the proliferation of astrocytes, the formation of the glial scar and its release of 
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inhibitory molecules, especially chondroitin sulfate proteoglycans (CSPGs) (Holmberg et al., 

2008; Ito et al., 2009; Susarla et al., 2011; Toyooka et al., 2011). 

 The pattern of axonal injury results in different fates for the neuronal cell body  

Following axotomy, CNS neurons undergo cell death or somatic atrophy. Axonal injury 

due to direct transection is commonly followed by neuronal death. Dale et al (1995) reported that 

only 30 - 40% of corticospinal motor neurons in layer V of the adult rat cerebral cortex survived 

13 days after the intracortical transection at 200µm ventral to the layer V cortex. The number of 

corticospinal neurons decreased 5 and 10 weeks after complete thoracic spinal cord transection at 

T-6/T-7 level (Feringa et al., 1983). Similarly, the number of corticospinal and rubrospinal 

neurons decreased at 10 or 20 weeks after complete thoracic spinal cord transection at T-9 level 

(McBride et al., 1990). Apoptosis of the primary cortical motor neurons was observed at 1 week 

after transection of the dorsal funiculus at T-9 level (Hains et al., 2003). Galindo-Romero and 

colleagues (2011) observed significant retinal ganglion cell (RGC) loss at 5 days and 21 days 

following optic nerve transection 0.5mm from the optic disc. 

In contrast to neuronal death seen with transection, neuronal survival and atrophy has 

been described following diffuse traumatic axonal injury in animal models.  Povlishock and 

colleagues demonstrated that the neuronal cell bodies affected by perisomatic axonal injury 

sustained atrophy rather than cell death (Greer et al., 2011; Lifshitz et al., 2007; Singleton et al., 

2002). Specifically, in a rat midline fluid percussion injury model, a diffuse TBI model, 

Singleton (2002) observed that diffuse axonal swellings occurred within the mediodorsal 

neocortex, with the neocortical neurons sustaining traumatic axonal injury from 30 minutes to 48 

hours post injury. These axotomized somata demonstrated the increased expression of eIF2α, 

while ultrastructurally these somata showed reactive response, the dispersion and loss of rough 
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endoplasmic reticulum, without evidence of overt organelle or cytoskeletal change, not 

supporting a cell death cascade (Singleton et al., 2002). Utilizing the same animal model, 

Lifshitz (2007) observed that the number of neurons in the ventral basal complex suffering 

perisomatic axotomy, did not decrease significantly from 1 day through 28 days post injury, 

suggesting no significant cell death following diffuse traumatic axonal injury (Lifshitz et al., 

2007). The nuclear volume of thalamic neurons of the ventral basal complex, however, decreased 

at 1 day and 7 days post injury compared to sham animals, consistent with atrophy (Lifshitz et al., 

2007). By modifying this midline fluid percussion injury model to mice, Greer (2011) showed 

evidence that the neurons in layer V of cerebral cortex demonstrated atrophy at 28 days after 

diffuse TBI, without evidence of neuronal death, and over time the downstream axon showed a 

significant elongation, suggesting a regenerative response.  

The distance from the axonal lesion to the neuronal soma affects the neuronal response 

In addition, the proximity of the axonal injury to their neuronal cell bodies of origin may 

influence the neuronal cell body response. More cell death occurs when the axonal lesion is near 

to the neuronal cell body of origin, with more neuronal sparing seen with more distal lesions 

(Dale et al., 1995; Liu et al., 2003; Liu et al., 2004). For example, the number of surviving 

corticospinal motor neurons in layer V of the adult rat cerebral cortex was 70% at 13 days after 

the intracortical transection 400µm below the layer V cortex, and decreased to 30-40% during 

the same period when the intracortical transection was 200µm below the layer V cortex (Dale et 

al., 1995). After infusion of ciliary neurotrophic factor (CNTF), the number of surviving 

corticospinal motor neurons increased to 2- fold compared to the number seen with vehicle 

treatment following the axonal transection at the 200µm depth, while no recognizable CNTF - 

mediated neuronal protection was observed when the intracortical transection was at the 400µm 
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depth (Dale et al., 1995). These results suggest that the neuronal survival depends on the 

retrograde axonal transport of neurotrophic factors to the neuronal cell body and/or other 

neuronal signaling molecules.  The more distant axotomy from the neuronal cell body, the more 

continued retrograde axonal transport of the neurotrophic factors from the downstream target 

tissue, and the more likely that the sustaining neuronal cell body will survive. 

Similar findings were observed in spinal cord injury. Fifty seven percent cell loss of rat 

rubrospinal neurons occurred at 2 weeks after the axonal transection at the brain stem level, in 

contrast to the 7% cell loss during the same period after the axotomy at C2 level (Liu et al., 

2003). More swollen mitochondria appeared in rat rubrospinal neurons following axotomy at 

brainstem than at C2 level, with more increased expression of nitric oxide (NO) synthase after 

axotomy at brainstem than at C2 level, and no significant change after axotomy at T10 level, and 

the mitochondrial Mn-superoxide dismutase was significantly reduced after axotomy at 

brainstem in contrast to no alteration following C2 axotomy (Liu et al., 2004). These findings 

suggest that the distance between the axonal lesion and the neuron soma is one of the 

determinants of the response on the neuronal body and the neuronal fate, probably through the 

NO-mediated toxicity and superoxide -mediated mitochondrial damage (Liu et al., 2004). 

The signal transmission process from the axonal lesion to the neuron body 

Since different neurons have different fates following different patterns/locations of 

axotomy, as described above, it is meaningful to address how the axonal injury signal transfers to 

the neuronal cell body. The current view regarding retrograde response of neuronal cell body to 

axonal injury is based on physical transection model (Bonatz et al., 2000; Giehl and Tetzlaff 

1996; Merline and Kalil 1990). The transection of CNS axons exposes the axonal cylinder to 

different extracellular electrical and chemical environment, and activates a complex series of 
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responses. The early phase is mediated by the electrical signal from the axonal lesion site back to 

the soma (Mandolesi et al., 2004), the second phase is the alteration of biochemical signal, 

followed by the third phase of modulating gene expression and protein translation. 

The first signal from axotomy event is the electrophysiological response. In an in vitro 

study, following the axotomy (~100µM from cell body) of neurons cultured from rodent visual 

cortex, influx of calcium was initially observed at the lesion site, and then this increase of 

calcium transferred along the axon toward the soma. This axotomy induced calcium increase was 

associated with the activation of the voltage-gated calcium channels and Na
+
/Ca

2+
 exchange 

(Mandolesi et al., 2004).  

The second signal involves the interruption of the supply of trophic factors conveyed to 

the cell body by retrograde axonal transport, which are essential for neuronal survival and 

regeneration (Ben-Yaakow and Fainzilber, 2009; Shadiack et al., 2001). 

Another system of signaling involves the retrograde transport of activated proteins 

originating from the injury site (Ambron and Walters, 1996; Ben-Yaakow and Fainzilber, 2009; 

Hanz et al., 2003; Perlson et al., 2004; Zhang and Ambron, 2000). De novo synthesis of importin 

β at the axon lesion site was observed 30 minutes to 1 hour after lesioning by local translation of 

axonal mRNA (Hanz et al., 2003). Then importin α and importin β formed a high-affinity 

heterodimer and associated with the motor protein dynein 2 hours after lesion (Hanz et al., 2003). 

Further, nuclear localization signal (NLS) – bearing signaling protein bond to the high-affinity 

binding site on the α/β importin (Hanz et al., 2003). Then, NLS-binding complex was transferred 

retrogradely toward the cell body at about 1h/mm, through the interaction of importin α with 

dynein (Hanz et al., 2003; Hanz and Fainzilber, 2004). Any disruption of NLS complex slowed 

the regeneration of injured sensory neurons (Hanz and Fainzilber, 2004). These findings 
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implicated the connection between retrogradely transported NLS by importins in periphery and 

the nuclear import of NLS by importins in cell bodies, and probably this is a potential retrograde 

intrinsic mechanism to promote neuronal regeneration in CNS.  

The activation of CREB-cAMP  pathway in neuron cell body after axotomy 

After receiving the retrograde transported injury signal, the neuronal cell body regulates 

transcription factors and alters translation of related protein. It has been documented that cAMP 

level was elevated in the DRG neurons following a conditioning lesion, in which the sciatic 

nerve and the dorsal column were injured simultaneously, or the sciatic nerve was injured before 

the dorsal column (Hannila and Filbin, 2008; Qiu et al., 2002). This cAMP elevation was 

dependent on the activation of protein kinase A (PKA) (Qiu et al., 2002). Following cAMP 

elevation, the transcription factor cAMP response element binding protein (CREB) was 

activated, promoting neurite outgrowth and axon regeneration (Gao et al., 2004). Several cAMP-

regulated genes have been identified, such as arginase I, polyamines (Abe and Cavalli, 2008; Cai 

et al., 2002; Gao et al., 2004) and interleukin-6 (IL-6; Cao et al., 2006). 

The activation of c-Jun and the induction of ATF-3 in neuron cell body after axotomy, and 

their relation to axon regeneration 

In addition to the activation of CREB-cAMP pathway, the c-Jun N-terminal kinase (JNK) 

pathway is also activated following axotomy (Kenney and Kocsis, 1998; Greer et al., 2011; Itoh 

et al., 2011; Lindwall and Kanje, et al., 2005). Greer et al (2011) demonstrated that at 1 and 3 

days following midline fluid percussion injury, phospho-c-Jun was expressed in atrophic neurons 

within the layer V cortex that sustained traumatic axonal injury, and this expression persisted 

through 28 day following injury. Similarly, activating transcription factor 3 (ATF-3), was also 

upregulated in axotomized neurons in layer V cortex at 3 day and 7 day post-injury, although its 



www.manaraa.com

26 

 

expression was reduced at 14 day and 28 day post-injury (Greer et al., 2011). Concomitant with 

these findings, reactive sprouting from the truncated axon was observed as early as 1 day post-

injury, and long, thin axonal profiles originated from phospho-c-Jun positive neurons was 

observed at 14 and 28 day post-injury (Greer et al., 2011). These results support the axonal 

regeneration function of JNK pathway following axotomy (Broude et al., 1997; Raivich et al., 

2004; Raivich, 2008). Lindwall and Kanje (2005) observed in a rat sciatic nerve ligation model, 

the retrograde axonal transport of JNK upstream kinases, including mitogen activated protein 

kinase (MAPK) kinase kinases (MEKKs) MEKK1, MAPK kinases (MKK) MKK7 and p-

MKK4, mixed lineage kinase (MLK) 3, p-JNK, p-ATF2, and the scaffolding protein JNK 

interacting protein (JIP) (Whitmarsh et al., 2001; Yasuda et al., 1999). On the contrary, the 

retrograde transport of c-Jun and p-c-Jun was minimal (Cavalli et al., 2005; Lindwall and Kanje, 

et al., 2005). Additionally, they revealed the anterograde axonal transport of Hsp27, a protein 

upregulated after the activation of c-Jun and the induction of ATF3 in the nucleus, and 

transported and coupled with p-c-Jun and ATF3 (Lindwall and Kanje, et al., 2005; Nakagomi et 

al., 2003). These facts indicate that JNK signaling molecules are transported retrogradely toward 

the neuronal cell body, where they activate the phosphorylation of c-Jun and the induction of 

ATF3 (Lindwall and Kanje, et al., 2005). Interestingly, NLS motifs, as described before which 

were transferred retrogradely toward the cell body via the coupling of importin α with dynein 

(Hanz et al., 2003), were found located within the basic region of the DNA binding domain of 

ATF proteins (Hai et al., 1989), suggesting that ATF3 could be induced after the reception of the 

retrogradely transported NLS signal from the axon lesion site. 

JNKs have 3 isoforms, JNK1, JNK2 and JNK3. It has been demonstrated that JNK2 and 

JNK3 are necessary for neuritogenesis, JNK1 and JNK2 are related to neurite elongation and the 



www.manaraa.com

27 

 

phosphorylation of microtubule-associated protein MAP1B which plays function in axonal 

regeneration, and JIP1 is associated with neurite initiation and extension (Barnat et al., 2010; 

Bogovevitch 2006; Bouquet et al., 2004; Dajas-Bailador et al., 2008; Mack et al., 2000). These 

JNKs functions are further supported by the fact that axonal outgrowth was reduced when c-Jun 

phosphorylation was inhibited by the selective JNK inhibitors SP600125 and (D)-JNKI1 

(Lindwall et al., 2004). 

The phosphorylation of c-Jun is involved in axonal regeneration. Upregulation of 

phospho-c-Jun was observed in the rat layer V cortex neuron after central fluid percussion brain 

injury (Greer et al., 2011), the rat mammillaris neurons up to 150 days after the transection of the 

medial forebrain bundle and mammillothalamic tract (Herdegen et al., 1993), bulbospinal and 

rubrospinal neurons after cervical spinal hemisection (Vinit et al., 2011). In a sciatic nerve crush 

injury model, when the expression of c-Jun was depleted in adult DRGs by siRNA technique, the 

size of the growth cone of the regenerating axons reduced, suggesting the role of c-Jun in 

regulating growth cone morphology (Saijilafu et al., 2011).  

ATF-3 expression is also associated with axon regeneration. It has been demonstrated 

that ATF-3 facilitated peripheral nerve regeneration by increasing the expression of growth-

associated genes small proline-repeat protein 1A (SPRR1A) in the DRG neurons (Huebner et al., 

2009; Seijffers, et al., 2007). When pieces of peripheral nerve were transplanted into the 

thalamus of adult rats, axonal regeneration was observed originating from the thalamic reticular 

nucleus and medial geniculate nuclear that contained ATF-3 positive cells, which concomitantly 

expressed c-Jun (Campbell et al., 2005). Again, Greer (2011) also observed ATF-3 expression in 

axotomized neurons in layer V cortex at 1 - 7 day post-injury. These results indicate the initiation 

of a somatic gene expression program promoting neuronal recovery and/or axon regeneration. 
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In summary, the CNS neurons undergo cell loss due to primary transection of the axon, 

or survive and /or undergo atrophic change following diffuse axonal injury induced by the stretch 

at the acceleration/deceleration event. This divergent neuronal response could be due to different 

electrical and biochemical signals transferred from the axon terminal retrogradely toward the cell 

body of CNS neuron, which then initiates the synthesis and/or modification of corresponding 

molecules and factors, determining whether the neuron should die or survive and promote axon 

regeneration and/or repair. This response could be further influenced by the distance from the 

axonal lesion to the neuronal soma (perisomatic versus remote from the cell body). 

 

Visual dysfunction in TBI 

As noted above, there are limitations in our understanding of the mechanisms involved in 

axonal dieback in TAI, its anterograde/downstream degeneration and potential synaptic plasticity, 

as well as the differential response of the CNS neuronal cell body to axonal injury. In addition to 

these limitations, the majority of previous TAI studies have been conducted in neocortex, 

thalamus, corpus callosum, internal capsule and brainstem, and focused on motor and memory 

function, without sufficient consideration of the special sensory pathways involved in TBI, such 

as the visual system.  

This issue is of merit as visual dysfunction occurs frequently following TBI and can 

include decreased visual acuity, loss of color perception and contrast sensitivity, visual field loss, 

diplopia, blurred vision, photophobia, convergence insufficiency, saccade and disorientation 

(Atkins et al., 2008; Barker et al., 1997; Hoyt, 2007). In a study on the incidence of combat-

related eye injuries, the Defense Veterans Brain Injury Center (DVBIC) reported that 80 percent 

of the 3,900 troops sustaining TBI had visual problems (Zampieri, 2007).  These could be due to 
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traumatic optic nerve damage or the disturbance of the intracranial visual pathways associated 

with TBI (Atkins et al., 2008). Traumatic optic nerve damage may be directly due to optic canal 

fracture (Matsuzaki et al., 1982; Sarkies 2004) during TBI which results in optic nerve 

compression/crush (Chen et al., 2004; Rumiantsev et al., 1981; Zhilin et al., 2011) or transection 

(Sarkies 2004). Optic nerve may also be injured indirectly from compression and contusion in 

closed head injury (Anderson et al., 1982; Sarkies, 2004). The intracanalicular optic nerve is 

unmovable within the optic canals, making this segment susceptible to shearing and/or stretching 

forces from the orbital and intracranial segments during rapid acceleration-deceleration 

movements (Rubin, 2005). In addition to the optic nerve, the optic chiasm, the optic radiation, 

the occipital cortex, as well as cranial nerves III, IV and VI may also be damaged during TBI 

(Cockerham et al., 2009). 

 

Diffuse traumatic axonal injury in the visual system 

 
Several human and animal studies have demonstrated diffuse axonal injury within the 

visual system after traumatic brain injury. With diffusion tensor imaging, Palmer et al (2010) 

showed that fractional anisotropy (FA) decreased in the optic radiation in patients sustaining 

severe TBI, consistent with axonal damage in that area. In a study on infants sustaining the 

shaken baby syndrome, Gleckman et al (2000) observed axonal swellings in the optic nerve 

caudal to the lamina cribrosa utilizing beta-amyloid precursor protein immunostaining.  Foda and 

Marmarou (1994) found diffuse axonal injury in the optic tract in a rat weight drop model. 

Similarly, in a rat weight drop injury model, Ding et al (2001) observed diffuse axonal injury in 

the optic chiasm, optic tract, lateral geniculate nuclei and superior colliculus with silver staining.  
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Besides the occurrence of TAI within the visual system after TBI, several researchers 

have utilized an optic nerve stretch model to generate diffuse axonal injury in the optic nerve 

(Gennarelli et al., 1989; Maxwell et al., 1994; Maxwell and Graham, 1997; Sulaiman et al., 

2011; Saatman et al., 2003; Serbest et al., 2007).  As early as 1989, Gennarelli and colleagues 

stretched the optic nerve of albino guinea pigs, and observed beaded axons and terminal bulbs in 

the optic nerve, as well as impaired axonal transport of HRP from the vitreous to the superior 

colliculus. Saatman and colleagues (2003) modified this optic nerve stretch model in the albino 

guinea pig to mice, and observed axonal swellings and bulbs in the optic nerve, as well as 

impaired retrograde axonal transport from the superior colliculus to the retina.  

 

 

Summary and Statement of the Problem 

In sum, we have discussed TBI and TAI as a major contributor to TBI mortality and 

morbidity. Previous work on TAI has provided critical insight into the initiating mechanisms 

associated with TAI, involving alterations in axolemmal permeability, calcium dysregulation, 

and the subsequent activation of the proteases calpain and caspase, which then alter the 

cytoskeleton to ultimately impair axonal transport to result in organelle / protein accumulation, 

with the formation of axonal swelling and disconnection. However, following axonal swelling 

and disconnection, little is known in terms of the subsequent axonal dieback overtime post TAI, 

as well as its ongoing anterograde/downstream changes or the retrograde response of neuronal 

cell body to TAI. These issues are important from several perspectives in that such information is 

critical to future studies targeting neuroprotection and repair. Further, in that the visual system 

provides a highly organized projection system to follow these events, its choice for continued 

investigation seems both reasonable and rational. Lastly, given the prevalence of visual 
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dysfunction following TBI, and the evidence of TAI within the visual system in human and 

animal studies, the current thesis attempts to address TAI within the optic nerve/visual pathway 

following TBI,  and its anterograde and retrograde change take on further significance.   

In this dissertation (Chapter 3), using a mice central fluid percussion diffuse brain injury 

model, we describe the development of TAI within the optic nerve, its disconnection and 

associated axonal dieback both proximally and distally overtime post injury. We compare and 

contrast the morphological differences between the proximal and distal disconnected axonal 

segments. Specifically, we describe the regression and reorganization of the proximal swellings, 

and the persistence of the distal disconnected and degeneration swellings. We also demonstrate 

that this pathological TAI within the optic nerve is accompanied by transient and subtle 

breakdown of the blood-brain-barrier with the formation of edema and YFP fluorescence 

quenching in the early phases post injury. 

In this communication (Chapter 4), we also address the fate of retinal ganglion cell layer 

following TAI within the optic nerve from 2 to 90 days post injury. Utilizing multiple qualitative 

and quantitative methods as well as ultrastructure analysis, we find no evidence of RGC loss 

following TAI. Rather, we demonstrate RGC survival, together with the persistent expression of 

phospho-c-Jun, which has been linked to neuronal survival and potential axonal repair in other 

injury paradigms. 

Further, in Appendix I (Chapter 5), we demonstrate a differential microglia/macrophage 

response in the disconnected proximal and distal axonal segments. Specifically, we demonstrate 

that activated microglia/macrophages closely envelop/encompass the distal disconnected, 

degenerating axonal segments. In contrast, the microglia/macrophages appear less reactive in the 
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proximal axonal segments, with their processes paralleling these axonal profiles undergoing 

reorganization/repair.  

Lastly, in Appendix II (Chapter 6), we demonstrate the resolution of edema in the 

interstitial space within the optic nerve, and the recovery of intact YFP fluorescent axonal fibers 

overtime in the region of previously demonstrating fluorescent loss (Chapter 3). This recovery of 

the intact YFP fibers is consistent with the reversal of fluorescence quenching.   

Collectively, the data provided in both Appendix I and II support the reparative processes 

ongoing in the optic nerve at the site of injury as well as in its upstream/retrograde sites, while 

supporting the persistence of downstream/anterograde scattered Wallerian degeneration. 
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CHAPTER TWO 

GENERAL MATERIALS AND METHODS 

 

Breeding and genotyping of YFP-16  transgenic mice.   

The Thy1-YFP-16 transgenic mice [B6.Cg-Tg(Thy1-YFP)16Jrs/J, stock number 003709] 

were obtained from the Jackson Laboratory (Bar Harbor, ME) and maintained as heterozygotes. 

Inheritance of the YFP gene was identified from an ear punch taken at weaning (approximately 

postnatal day 21). The ear tissue was mounted onto a glass slide and examined using a FITC 

filter on an Olympus DP71 digital camera (Olympus, Center Valley, PA), where YFP-positive 

axons could be easily identified. 

 

Surgery and animal model of traumatic brain injury.  

All protocols used in this study were approved by the Institutional Animal Care and Use 

Committee (IACUC) of Virginia Commonwealth University. Adult male C57/BL6 mice and 

Thy1-YFP-16 transgenic mice (20–25 g) were subjected to central fluid percussion TBI to 

produce traumatic axonal injury in the optic nerve. The fluid percussion injury model was 

modified from that previously described in detail by Dixon (1987). Briefly, animals were 

anesthetized with 4% isoflurane in 100% O2, and maintained via nosecone with 2% isoflurane in 

100% O2 during surgery, with the body temperature controlled at 37
o
C via a feedback-controlled 

heating pad (Harvard Apparatus, Holliston, MA). A midline 3.0 mm circular craniotomy was 

made over the sagittal suture halfway between the bregma and the lambda, taking care not to 
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damage the underlying dura. A Luer-Loc syringe hub was cut away from a 20 gauge needle and 

affixed to the craniotomy site. Dental acrylic was applied around the hub to enhance stability. As 

the dental acrylic dried and the injury hub became stable, saline was applied to blunt any 

exothermic reaction from the cured acrylic. The skin was then sutured over the hub, with 

lidocaine and bacitracin ointment applied to the wound. The animal was allowed to recover for 1 

hour in a warmed cage prior to injury. Before the induction of injury, each animal was again 

anesthetized for 4 min (100% O2 and 4% isoflurane). The craniotomy site was exposed and the 

injury hub was connected to the fluid percussion device. The animal was then injured at a 

magnitude of 1.40±0.05 atmospheres. The pressure pulse was measured by a storage 

oscilloscope (Tektronix 5111; Tektronix, Beaverton, OR). Injury preparation and induction were 

completed prior to the animal’s recovery from anesthesia. The hub and dental acrylic were then 

removed, and the incision was rapidly sutured. The duration of transient unconsciousness was 

determined by measuring the time it took for the animal to recover the following reflexes: toe 

pinch, tail pinch, corneal blink, pinna, and righting reflex. After recovery of the righting reflex, 

the animals were placed in an incubator with a heating pad to maintain normothermia and 

monitored during recovery. For animals receiving sham injury, all of the above steps were 

followed with the exclusion of the injury pulse. All injured animals had righting reflex recovery 

times of 4–5 min, compared with less than 2 min for sham-injured animals, indicating injuries of 

comparable severity. 

 

Animals Utilized for Specific Studies.  

For the characterization of the diffuse traumatic axonal injury within the optic nerve 

following TBI, YFP-16 and wild type (WT) mice were allowed to survive 5 min, 15 min, 1 hour, 
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3 hour, 12 hour, 24 hour and 48 hour following injury (for each time point, 1 WT and 6 YFP-16 

mice were utilized in the injured group, with 1 WT and 2 YFP-16 mice was used in the sham 

group). For the study of the retinal ganglion cell response to diffuse traumatic axonal injury, as 

well as the activation of microglia/macrophage in the optic nerve, YFP-16 mice were allowed to 

survive 2 day, 7 day, 14 day, 28 day and 90 day following injury (for each time point, 9 YFP-16 

mice were utilized in the injured group, with 6 YFP-16 mice were utilized in the sham group). 

 

Animal perfusion  

At the predetermined survival times, mice were intraperitoneally injected with an 

overdose of sodium pentobarbital and then transcardially perfused with 100 ml heparinized 

normal saline followed by 200 ml 4% paraformaldehyde in Millonig’s buffer (135.8mM Na 

Phosphate monobasic/108.8mM NaOH). For electron microscopy, animals were perfused with 

4% paraformaldehyde/0.2% glutaraldehyde or 2% paraformaldehyde/2.5% glutaraldehyde for 

optimal processing. 

 

Optic nerve preparation  

After above perfusion and overnight incubation in the perfusion fixative solution, the 

optic nerve, chiasm and optic tract, together with the brain were removed from the skull for 

routine fluorescence and confocal analysis. The optic nerves were blocked to include the entire 

optic nerve, the chiasm, the initial part of the optic tract, and related brain tissue, and post-fixed 

in the same fixative solution overnight. Following post-fixation, this optic nerve block was 

cryoprotected and then cut longitudinally into 10µm sections with a cryotome (Shandon 

Scientific Ltd., Cheshire, U.K.). Serial sections revealing the entire length of the optic nerve 
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(from the globe to the chiasm) were then collected in a serial order in Millonig’s buffer in 24 

well culture plates (Falcon, Newark, DE), and stored at 4
o
C for further use. 

 

Retinal whole-mount preparations  

After 15 minutes fixation, the extraocular muscles were cut from the globe, the optic 

nerve was transected immediately behind the globe, and the globe was dissected out from the 

orbit. The cornea was punctured with an 18 gauge needle, cut into 4 quadrants, and torn to the 

limbus using two sets of forceps. The lens was removed. The retina was separated from the 

pigmented layer, and immersed in 4% paraformaldehyde in Millonig’s buffer for 4 hours. Then 

the retina was washed with phosphate buffered saline (PBS) for 5 x 10 minutes. Then each retina 

was cut into 4 quadrants, and mounted flat on a glass slide with Vectashield Hardset Mounting 

Medium with DAPI (Vector Laboratories), and cover-slipped for image capture with a Leica 

TCS-SP2 AOBS confocal microscope (Wetzlar, Germany). 

 

Retinal cryostat section preparation  

After the retina was separated from the pigmented layer as described above, it was fixed 

in 4% paraformaldehyde in Millonig’s buffer overnight. After 5 x 10 minutes thorough wash in 

PBS, the retina was immersed in 30% sucrose in PBS overnight.  The pair of retinal cups from 

the same animal was then embedded side to side and frozen to -20
o
C in optimal cutting 

temperature (OCT) compound (Electron Microscopy Sciences, Cat No.62550-01, Hatfield, PA, 

U.S.A.), and cut into 12µm sections with a cryotome. Serial sections were collected on 

Superfrost
®
/Plus microscopic glass slides (Fisher Scientific, catalog no.12-550-15, U.S.A.), with 
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4 serial sections of each eye on each slide (8 sections for 2 eyes), and stored at -20
o
C for further 

use. 

 

Single and double immunofluorescence labeling protocol  

After optic nerve or retinal sections were selected, they were rinsed 3 x 10 minute in PBS 

or Tris-buffered saline (TBS) (for antibodies targeting phosphorylated antigens), sections were 

treated with blocking solution 10% normal goat serum (NGS) with 0.5% Triton X-100 and 2% 

bovine serum albumin (BSA) in PBS (or TBS) for 2 hours. When employing primary antibodies 

produced from a mouse host, endogenous mouse IgG was blocked by Mouse on Mouse Kit 

(MOM™; Vector Laboratories; Burlingame, CA). The sections were then incubated in primary 

antibodies in 10% NGS with 0.5% Triton X-100 and 2% BSA in PBS (or TBS) at 4°C overnight. 

On the second day, the sections were rinsed in 1% NGS with 0.2% Triton X-100 and 1% BSA in 

PBS (or TBS) 6 x 10 minutes, then incubated in the appropriate Alexa fluor-conjugated 

secondary antibodies (Alexa 568, Alexa 594 or Alexa 633) in 1% NGS with 0.2% Triton X-100 

and 1% BSA in PBS (or TBS) solution for 2 hours at room temperature. Then tissue sections 

were rinsed in PBS (or TBS), mounted onto gelatin-coated glass slides, and cover slipped with 

Vectashield Hardset Mounting Medium with DAPI (Vector Laboratories). Antibody 

concentrations are listed in Table 1. 

For double labeling, the same protocols were utilized, with the specific attention that 

different primary antibodies were added at the same time for the overnight incubation, followed 

by the reaction with secondary antibodies that were conjugated to different Alexa fluors with 

binding specifically to different primary antibodies. 

 



www.manaraa.com

38 

 

Table 1. Antibodies for immunofluorescence labeling 

Antibodies Host Vendor Dilution 

1st Anti-β-APP (c-terminus)                                                rabbit Zymed, San Francisco, CA          1:1000 

2nd Alexa 594-conjugated  

goat anti-rabbit IgG  

goat Vector Laboratories, Burlingame, 

CA 

1:200 

1st Texas-Red conjugated  

goat anti-mouse IgG                                               

goat Molecular probes, Invitrogen       1:200 

1st Anti-GFP                                                                          rabbit Chemicon, Temecula, CA            1:8000 

2nd Alexa 594-conjugated  

goat anti-rabbit IgG  

goat Vector Laboratories 1:500 

1st Anti-Digoxigenin  mouse Roche Applied Science, Germany 1:250 

2nd Alexa 594-conjugated 

 goat anti-mouse IgG  

goat Invitrogen; Eugene, Oregon 1:250 

1st cleaved-caspase-3(Asp175)                               rabbit Cell Signaling Technology              1:500 

2nd Alexa 594-conjugated  

goat anti-rabbit IgG 

goat Molecular probes, Invitrogen 1:250 

1st Anti-Brn3a                                                                 mouse Chemicon and Linco, Millipore                                          1:125 

2nd Alexa 568-conjugated 

 goat anti-mouse IgG 

goat Molecular probes, Invitrogen 1:500 

1st phospho-c-Jun (Ser63)                                      rabbit Cell Signaling Technology, Danvers, 

MA         

1:100 

2nd Alexa 633-conjugated 

 goat anti-rabbit IgG  

goat Molecular probes, Invitrogen 1:200 

1st Anti-Iba1                                                                                                                                         rabbit Wako Pure Chemical Industries, Ltd 1:1000 

2nd Alexa 568-conjugated 

 goat anti-rabbit IgG 

goat Molecular probes, Invitrogen 1:500 

 

Confocal Microscopy and Image Acquisition  

Images of YFP positive retina and optic nerve were acquired with a Leica TCS-SP2 

AOBS confocal microscope (Leica Microsystems, Wetzlar, Germany). Targeted optic nerves or 

retina were imaged with a scan resolution of 1024 × 1024 pixels. DAPI fluorescence was excited 

using a 405nm laser, and emission was detected over a range of 410-550 nm with the intensity at 

25%. YFP fluorescence was excited using the 514 nm line of an argon laser, and emission was 

detected over a range of 520-554 nm with the intensity at 50%. Texas-Red fluorescence was 

excited using a 594 nm helium–neon laser, and emission was detected over a range of 605-700 

nm with the intensity at 50%. Alexa 568 fluorescence was excited using a 594 nm helium–neon 
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laser, and emission was detected over a range of 599-628 nm with the intensity at 100%. Alexa 

594 fluorescence was excited using a 594 nm helium–neon laser, and emission was detected over 

a range of 600-652 nm with the intensity at 100%. Alexa 633 fluorescence was excited using a 

633 nm helium–neon laser, and emission was detected over a range of 640-685 nm with the 

intensity at 100%. During scanning, the “Offset” of PMT (photon multiply tube) which adjusts 

the background was set to show a few green spots, and the “Gain” of PMT which adjusts the 

bright points was set to show a few blue spots using the color gradient to avoid pixel intensity 

saturation. To minimize noise, the line averaging was always set at 4. A sequential scan was 

performed to avoid the potential for crosstalk between the YFP fluorophore, DAPI and Alexa 

dyes. For the study of the spatial-temporal relationship between the axon and 

macrophage/microglia, their three-dimensional reconstruction was obtained via the Volocity 

Software package (Improvision, version 4.3.2, Perkin Elmer; Waltham, MA). 

 

Electron microscopy  

For electron microscopic (EM) analysis, two different perfusion protocols were employed 

to achieve: (1) optimal ultrastructure detail, or (2) the optimal visualization of the YFP-positive 

axons.  

To achieve optimal ultrastructure detail, wild type mice or the YFP-16 transgenic mice 

were first perfused with 100ml heparinized normal saline, followed by 200ml 2% 

paraformaldehyde and 2.5% glutaraldehyde in Millonig’s buffer. After 15 minutes fixation, the 

retina was removed as described above, and immersed in 2% paraformaldehyde and 2.5% 

glutaraldehyde in Millonig’s buffer overnight, together with the brain and the optic nerve. Then 

these fixation prepared retina  and optic nerves were osmicated, dehydrated, and flat embedded in 

epoxy resin (Embed-812; Electron Microscopy Sciences, Hatfield, PA) as detailed below. 

http://www.jneurosci.org/cgi/redirect-inline?ad=Improvision
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For the optimal EM analysis of the YFP positive axons, the YFP-16 transgenic mice were 

first perfused with 100ml heparinized normal saline, followed by 200ml 4% paraformaldehyde 

and 0.2% glutaraldehyde in Millonig’s buffer in order to maintain the structure of YFP 

fluorescent protein and optimize immunoreactivity. Again, the brain and the optic nerves were 

post-fixed and blocked as described above. Then the optic nerve sections were cut longitudinally 

at 16µm with a vibratome (Leica VT1000 S; Leica Microsystems GmbH, Nussloch, Germany), 

and then prepared for immunocytochemistry using a primary antibody rabbit anti-GFP (1:8000; 

Chemicon) followed by the secondary antibody, biotinylated goat anti-rabbit IgG (1:1000; 

Vector). Next, the tissue was incubated in avidin-biotin complex (1:200, Vectastain ABC 

Standard Elite Kit; Vector Laboratories), and visualized by diaminobenzidene (DAB; Sigma-

Aldrich, St. Louis, MO) for subsequent EM analysis. 

Briefly, the above-prepared retina, optic nerves and the immunoreactive YFP-expressing 

optic nerve sections were osmicated in 1% OsO4, dehydrated, embedded in epoxy resins, 

mounted on plastic slides (Thomas Scientific Co., Swedesboro, NJ) and cover-slipped. After 

resin curing, the plastic slides were examined via routine light microscopy to identify RGCs, or 

the injured axonal segments within the optic nerve based on the patterns of distribution seen in 

the YFP-expressing mice evaluated by confocal microscopy. Once identified, these sites were 

excised, mounted on plastic studs, and thick sectioned to the RGC layer, or the depth of the 

immunoreactive sites of interest using an ultramicrotome (Leica Ultracut R; Leica, Wien, 

Austria). Serial 40nm sections were cut and mounted onto Formvar-coated single-slotted grids. 

The grids were then stained with 5% uranyl acetate in 50% methanol for 2 minutes and 0.5% lead 

citrate for 1 minute, and visualized using a JEM 1230 electron microscope (JEOL Ltd., Tokyo, 

Japan). 
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Quantification of YFP fluorescent axonal swellings and statistical analysis  

At the 12, 24 and 48 hours post injury time points, quantitative analysis of any observed 

axonal swelling detected by confocal imaging was conducted. The randomly selected YFP optic 

nerve sections were analyzed via the placement of 12 serial grids (each grid = 200 µm x 200 µm) 

along the optic nerve, six of which were placed proximally and labeled P1–P6 moving from the 

initial locus of TAI (approximately 1 mm rostral to the chiasm) to the globe, and the other six 

grids were located distally and labeled D1–D6 moving from the initial locus of TAI to the 

chiasm(Figure 3.6). Each 200 µm x 200 µm grid was aligned over the center of the optic nerve. 

For each individual grid, the number of axonal swellings per unit area, the total area of axonal 

swellings per unit area, and the percentage of the total area of axonal swellings per unit area, as 

well as the size of axonal swellings per unit area were measured using the Imaging Processing 

(IP) Lab 3.7 image analysis system (Scanalytics, Inc., Fairfax, VA). Only those swellings over 5 

µm in diameter were analyzed (Gao et al., 2010). Any swellings overlapping either the top, the 

bottom, or the left line of the grid were included, while those overlapping the right grid line were 

excluded from analysis. All results were presented as mean ± standard error of the mean (SEM). 

Each dependent variable was analyzed separately by a split-plot analysis of variance [ANOVA; 3 

(Time) x 12 (Location)]. To examine the specific effect of time for each dependent variable at 

each of the locations, subsequent one-factor (time) ANOVAs and posthoc Fisher LSD tests were 

conducted for each grid location. Statistical significance was set at p < 0.05 for all tests. 

 

Quantification of RGC and statistical analysis  
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To quantify the number of RGCs, the Brn3a immunofluorescently labeled retinal sections 

were captured using routine epifluorescent microscopy. Specifically, Brn3a retinal section (4 

sections per eye, with each slide containing 8 sections from both eyes) was digitally acquired at 

20 x magnification moving from side to side of the retina covering its entire extent, parallel to its 

curvature. Each retinal section was reconstructed using 7-9 images taken along the extent of the 

retina (Figure 4.4 A). To quantify the number of RGCs, the central image of those acquired was 

selected together with the other next adjacent image from both sides (Figure 4.4 A arrow). For 

each selected image, the number of Brn3a positive RGCs was counted in a 0.05 mm
2
 grid 

expanding along the image parallel to the alignment of the RGCs (Figure 4.4 B). This process of 

acquisition and counting was repeated for each of the retinal sections on the slide for a total of 72 

retinal images per animal (3 images/section x 8 sections/slide x 3 slides/animal = 72 

images/animal). For each animal, the number of Brn3a positive RGCs was calculated by 

summating the number of Brn3a positive RGCs from the 72 images, expressing them as mean ± 

standard deviation. To test the difference of the number of Brn3a positive RGCs overtime post 

injury, one way ANOVA was conducted. Statistical significance was set at p < 0.05 for all tests. 
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CHAPTER THREE  

TRAUMATIC AXONAL INJURY IN THE OPTIC NERVE: EVIDENCE FOR AXONAL 

SWELLING, DISCONNECTION, DIEBACK, AND REORGANIZATION    

 

 

Abstract 

Traumatic axonal injury (TAI) is a major feature of traumatic brain injury (TBI) and is 

associated with much of its morbidity. To date, significant insight has been gained into the 

initiating pathogenesis of TAI. However, the nature of TAI within the injured brain precludes the 

consistent evaluation of its specific anterograde and retrograde sequelae. To overcome this 

limitation, we used the relatively organized optic nerve in a central fluid percussion injury (cFPI) 

model. To improve the visualization of TAI, we utilized mice expressing yellow fluorescent 

protein (YFP) in their visual pathways. Through this approach, we consistently generated TAI in 

the optic nerve and qualitatively and quantitatively evaluated its progression over a 48-h period 

in YFP axons via confocal microscopy and electron microscopy. In this model, delayed axonal 

swelling with subsequent disconnection were the norm, together with the fact that once 

disconnected, both the proximal and distal axonal segments revealed significant dieback, with 

the proximal swellings showing regression and reorganization, while the distal swellings 

persisted, although showing signs of impending degeneration. When antibodies targeting the C-

terminus of amyloid precursor protein (APP), a routine marker of TAI were employed, they 

mapped exclusively to the proximal axonal segments without distal targeting, regardless of the 
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survival time. Concomitant with this evolving axonal pathology, focal YFP fluorescence 

quenching occurred and mapped precisely to immunoreactive loci positive for Texas-Red-

conjugated-IgG, indicating that blood–brain barrier disruption and its attendant edema 

contributed to this phenomenon. This was confirmed through the use of antibodies targeting 

endogenous YFP, which demonstrated the retention of intact immunoreactive axons despite YFP 

fluorescence quenching. Collectively, the results of this study within the injured optic nerve 

provide unprecedented insight into the evolving pathobiology associated with TAI. 

 

Key words: anterograde and retrograde axonal change; amyloid precursor protein; axonal 

dieback; brain edema; traumatic brain injury; YFP mice 

 

Introduction 

Traumatic axonal injury (TAI) is a major feature of human traumatic brain injury (TBI) 

(Povlishock and Katz 2005), and has been associated with much of its morbidity (Graham et al., 

2002). This has recently been reaffirmed by the use of modern imaging tools, including diffusion 

tensor imaging, which consistently demonstrates the presence of axonal injury across the 

spectrum of mild to severe TBI (Belanger et al., 2007; Kumar et al., 2010; Wang et al., 2008). In 

human postmortem studies, as well as in experimental animal investigations, significant insight 

has been gained into its initiating pathogenesis (Blumbergs et al., 1989; Buki et al., 2000; 

Christman et al., 1994; Farkas and Povlishock, 2007; Kelley et al., 2006; Maxwell et al., 1997; 

Pettus and Povlishock, 1996; Povlishock, 1992; Povlishock and Katz, 2005; Saatman et al., 

2003; Saatman et al., 2009), and its potential therapeutic management (Buki et al., 2003; Deng-

Bryant et al., 2008; Hall et al., 2010; Kilinc et al., 2007; Koizumi and Povlishock, 1998; 
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Marmarou and Povlishock, 2006; Mbye et al., 2009; Maxwell et al., 2005; Oda et al., 2011; 

Okonkwo et al., 1999; Saatman et al., 2010). 

 

Despite this progress, however, a fully comprehensive appreciation of TAI has been 

limited by both technical and animal modeling issues that have precluded the possibility of 

experimentally analyzing the course of a single nerve fiber from its initial injury to its ultimate 

axotomy. Further, although various antibodies have been widely embraced in both humans and 

animals to target such evolving axonal pathology, it is unclear if these antibodies, many of which 

target amyloid precursor proteins (APP; Blumbergs et al., 1995; Hortobagyi et al., 2007; Sherriff 

et al., 1994a, 1994b; Stone et al., 2000), universally detect axonal change within the proximal 

disconnected axonal segment versus the more distal, disconnected segment, or both. This issue is 

of more than academic interest in that these antibodies are routinely used in human forensic 

analysis (Gleckman et al., 1999; Reichard et al., 2005). 

To better follow the proximal and distal progression of traumatically-induced axonal 

injury, we assessed in the current study the relationship of known biological markers of axonal 

injury in an animal central fluid percussion injury (cFPI) model that evokes TAI within the optic 

nerve, whose axons manifest a relatively organized alignment. Further, to better follow the fate 

of these damaged axonal segments and their relation to known immunocytochemical markers of 

axonal injury, we utilized transgenic animals expressing yellow fluorescent protein (YFP), a 

variant of green fluorescent protein (GFP), in the optic nerve. Through the use of qualitative and 

quantitative imaging approaches examining the YFP expressing injured axons, we confirm and 

significantly extend previous data supporting the delayed pathogenesis of TAI. Importantly, we 

also provide unprecedented insight into this complex pathology, demonstrating post-TBI axonal 

swelling and disconnection, with proximal and distal axonal dieback accompanied by the 
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regression and reorganization of the proximal axonal swellings, and the degeneration and 

delayed clearance of the distal swellings. 

 

Methods 

To visualize axonal damage within the optic nerve, we utilized C57/BL6 wild-type mice 

and Thy1-YFP-16 transgenic mice which express YFP under the promoter Thy1 within over 

80% of the optic nerve fibers (Feng et al., 2000). We posited that within such a YFP-positive 

fiber population, any potential axonal change induced by the traumatic event could be easily and 

consistently visualized via routine fluorescence and/or confocal microscopy. 

 

Breeding and genotyping of YFP-16 transgenic mice  

The Thy1-YFP-16 transgenic mice [B6.Cg-Tg(Thy1-YFP)16Jrs/J, stock number 003709] 

were obtained from the Jackson Laboratory (Bar Harbor, ME) and maintained as heterozygotes. 

Inheritance of the YFP gene was identified from an ear punch taken at weaning (approximately 

postnatal day 21). The ear tissue was mounted onto a glass slide and examined using a FITC 

filter on an Olympus DP71 digital camera (Olympus, Center Valley, PA), where YFP-positive 

axons could be easily identified. 

 

Surgery and animal model of traumatic brain injury  

All protocols used in this study were approved by the Institutional Animal Care and Use 

Committee (IACUC) of Virginia Commonwealth University. Adult male C57/BL6 mice and 

Thy1-YFP-16 transgenic mice (20–25g) were subjected to central fluid percussion TBI to 

produce TAI in the optic nerve. The fluid percussion injury model was modified from that 
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previously described in detail by Dixon (1987). Briefly, animals were anesthetized with 4% 

isoflurane in 100% O2, and maintained via nosecone with 2% isoflurane in 100% O2 during 

surgery, with the body temperature controlled at 37
o
C via a feedback-controlled heating pad 

(Harvard Apparatus, Holliston, MA). A midline 3.0mm circular craniotomy was made over the 

sagittal suture halfway between the bregma and the lambda, taking care not to damage the 

underlying dura. A Luer-Loc syringe hub was cut away from a 20 gauge needle and affixed to 

the craniotomy site. Dental acrylic was applied around the hub to enhance stability. As the dental 

acrylic dried and the injury hub became stable, saline was applied to blunt any exothermic 

reaction from the cured acrylic. The skin was then sutured over the hub, with lidocaine and 

bacitracin ointment applied to the wound. The animal was allowed to recover for 1h in a warmed 

cage prior to injury. Before the induction of injury, each animal was again anesthetized for 4min 

(100% O2 and 4% isoflurane). The craniotomy site was exposed and the injury hub was 

connected to the fluid percussion device. The animal was then injured at a magnitude of 1.40 ± 

0.05 atmospheres. The pressure pulse was measured by a storage oscilloscope (Tektronix 5111; 

Tektronix, Beaverton, OR). Injury preparation and induction were completed prior to the 

animal’s recovery from anesthesia. The hub and dental acrylic were then removed, and the 

incision was rapidly sutured. The duration of transient unconsciousness was determined by 

measuring the time it took for the animal to recover the following reflexes: toe pinch, tail pinch, 

corneal blink, pinna, and righting reflex. After recovery of the righting reflex, the animals were 

placed in an incubator with a heating pad to maintain normothermia and monitored during 

recovery. For animals receiving sham injury, all of the above steps were followed with the 

exclusion of the injury pulse. All injured animals had righting reflex recovery times of 4 - 5min, 

compared with less than 2min for sham-injured animals, indicating injuries of comparable 
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severity. The animals were allowed to survive 5min, 15min, 1h, 3h, 12h, 24h, and 48h following 

injury. 

 

Optic nerve preparation  

At the appropriate survival times, Thy1-YFP-16 transgenic mice and wild-type mice were 

euthanized via an intraperitoneal overdose of sodium pentobarbital, and then transcardially 

perfused with 100ml heparinized normal saline, followed by 200ml 4% paraformaldehyde in 

Millonig’s buffer. After overnight incubation in the perfusion fixative solution, the optic nerve, 

chiasm, and optic tract, together with the brain were removed from the skull for routine 

fluorescence and confocal analysis. The optic nerves were blocked to include the entire optic 

nerve, the chiasm, the initial part of the optic tract, and related brain tissue, and post-fixed in the 

same solution overnight. Following post-fixation, this optic nerve block was cryoprotected and 

then cut longitudinally into 10µm sections with a cryotome (Shandon Scientific Ltd., Cheshire, 

U.K.). Serial sections revealing the entire length of the optic nerve (from the globe to the chiasm) 

were then collected in a serial order. All sections were collected beginning at a randomly 

generated starting point in Millonig’s buffer in 24-well culture plates (Falcon, Newark, DE). 

Beginning at a random starting point, every fourth serial section was then prepared for the 

visualization of the YFP. These sections were directly mounted on glass slides with ProLong-

Gold antifade reagent (Invitrogen, Carlsbad, CA), and cover-slipped for image capture with a 

Leica TCS-SP2 AOBS confocal microscope (Wetzlar, Germany) under the same setting. The 

adjacent serial sections were used for immunohistochemical staining via antibodies targeting 

APP. Next, the adjacent serial sections were prepared for the evaluation of potential blood–brain 

barrier (BBB) disruption via antibodies targeting IgG. Lastly, the subsequent adjacent serial 
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sections were used for determining axonal integrity via antibodies targeting the endogenous YFP 

(see below). 

 

Immunohistochemistry  

To study the relationship between the YFP-linked axonal change and an established 

biological marker of axonal pathology, antibodies targeting APP were used. YFP fluorescent 

optic nerve sections were microwaved for antigen retrieval (Stone et al., 1999; Stone et al., 

2000), incubated with the primary antibody rabbit anti-C-terminus APP (1:1000; Zymed, San 

Francisco, CA), washed, and then incubated in the secondary antibody Alexa 594-conjugated 

goat anti-rabbit IgG (1:200, Vector Laboratories, Burlingame, CA). Then the sections were 

washed and mounted for analysis via confocal microscopy. 

Additionally, to determine if these axonal changes were related to blood-brain barrier 

(BBB) disruption, with the formation of edema and its potential quenching of the YFP 

fluorescence, we probed the adjacent optic nerve sections with the antibody Texas-Red 

conjugated goat anti-mouse IgG (1:200; Invitrogen), targeting mouse serum proteins, and 

mapping any potential changes in BBB status with any related loss of YFP fluorescence. 

Lastly, to determine the potential for axonal preservation despite the loss of YFP 

fluorescence due to YFP fluorescence quenching, we reacted the subsequent adjacent segments 

with antibodies targeting the endogenous YFP. Briefly, after antigen retrieval in a microwave, 

YFP-expressing optic nerve sections were incubated with a primary antibody rabbit anti-GFP 

(1:8000; Chemicon, Temecula, CA). This was done because YFP and GFP share the same 

structure (Shagin et al., 2004). Thus, antibodies to GFP also recognize the YFP antigen (Sprecher 

and Desplan, 2008). Next, the sections were washed, followed by incubation in the secondary 
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antibody Alexa 594-conjugated goat anti-rabbit IgG (1:500; Vector Laboratories) for confocal 

microscopic analysis. In these immunocytochemical/confocal studies 5 injured mice were 

evaluated per time point, with the evaluation of 1 sham injured control per time point. 

 

Electron microscopy  

For electron microscopic (EM) analysis, additional mice were employed to include 1 

injured wild-type mouse, 1 injured YFP-expressing mouse, and their appropriate sham injured 

controls per time point. In these animals, two different perfusion protocols were employed to 

achieve: (1) optimal ultrastructure detail, or (2) the optimal visualization of the YFP-positive 

axons. To achieve optimal ultrastructure detail, wild-type mice were first perfused with 100mL 

heparinized normal saline, followed by 200ml 2% paraformaldehyde and 2.5% glutaraldehyde in 

Millonig’s buffer. For EM analysis of the Thy1-YFP-16 transgenic mice, the animals were first 

perfused with 100ml heparinized normal saline, followed by 200ml 4% paraformaldehyde and 

0.2% glutaraldehyde in Millonig’s buffer in order to maintain the structure of YFP fluorescent 

protein and optimize immunoreactivity. Again, the brain and the optic nerves were post-fixed 

and blocked as described above. For routine EM study the whole optic nerve was osmicated, 

dehydrated, and flat embedded in epoxy resin (Embed-812; Electron Microscopy Sciences, 

Hatfield, PA) as detailed below. In contrast, for the YFP-expressing mice, the optic nerve 

sections were cut longitudinally at 16µm with a vibratome (Leica VT1000 S; Leica 

Microsystems GmbH, Nussloch, Germany), and then prepared for immunocytochemistry using a 

primary antibody rabbit anti-GFP (1:8000; Chemicon) followed by the secondary antibody, 

biotinylated goat anti-rabbit IgG (1:1000; Vector). Next, the tissue was incubated in avidin-biotin 

complex (1:200, Vectastain ABC Standard Elite Kit; Vector Laboratories), and visualized by 
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diaminobenzidene (DAB; Sigma-Aldrich, St. Louis, MO) for subsequent EM analysis. 

Briefly, the above-prepared immunoreactive YFP-expressing sections were osmicated in 

1% OsO4, dehydrated, embedded in epoxy resins, mounted on plastic slides (Thomas Scientific 

Co., Swedesboro, NJ) and cover-slipped. After resin curing, the plastic slides were examined via 

routine light microscopy to identify the injured axonal segments within the optic nerve based on 

the patterns of distribution seen in the YFP-expressing mice previously evaluated by confocal 

microscopy. Once identified, these sites were excised, mounted on plastic studs, and thick 

sectioned to the depth of the immunoreactive sites of interest using an ultramicrotome (Leica 

Ultracut R; Leica, Wien, Austria). Serial 40nm sections were cut and mounted onto Formvar-

coated single-slotted grids. The grids were then stained with 5% uranyl acetate in 50% methanol 

for 2 min and 0.5% lead citrate for 1 min, and visualized using a JEM 1230 electron microscope 

(JEOL Ltd., Tokyo, Japan). 

 

Confocal microscopic data analysis  

At the 12-, 24-, and 48-h time points, quantitative analysis of any observed axonal 

swelling detected by confocal imaging was conducted. The randomly selected YFP optic nerve 

sections were analyzed via the placement of 12 serial grids (each grid = 200 µm x 200 µm) along 

the optic nerve, six of which were placed proximally and labeled P1–P6 moving from the initial 

locus of TAI (approximately 1 mm rostral to the chiasm) to the globe, and the other six of which 

were located distally and labeled D1–D6 moving from the initial locus of TAI to the chiasm. 

Each 200 µm x 200 µm grid was aligned over the center of the optic nerve. For each individual 

grid, the number of axonal swellings per unit area, the total area of axonal swellings per unit 

area, and the percentage of the total area of axonal swellings per unit area, as well as the size of 
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axonal swellings per unit area were measured using the Imaging Processing (IP) Lab 3.7 image 

analysis system (Scanalytics, Inc., Fairfax, VA). Only those swellings over 5 µm in diameter 

were analyzed (Gao et al., 2010). Any swellings overlapping either the top, the bottom, or the 

left line of the grid were included, while those overlapping the right grid line were excluded from 

analysis. All results were presented as mean ± standard error of the mean (SEM). Each 

dependent variable was analyzed separately by a split-plot analysis of variance [ANOVA; 3 

(Time) x 12 (Location)]. To examine the specific effect of time for each dependent variable at 

each of the locations, subsequent one-factor (time) ANOVAs and posthoc Fisher LSD tests were 

conducted for each grid location. Statistical significance was set at p < 0.05 for all tests. 

 

Results 

 
Macroscopic changes in the mouse brain and optic nerve 

 

Using this model system, which was modified from that previously used in rats (Dixon et 

al., 1987), we consistently generated microscopic injury in the optic nerve (see below), without 

overt damage to the brain tissue. As shown in Figure 3.1A, the injured brain revealed no 

significant contusion, parenchymal hemorrhage, or overt damage of the optic nerve and/or the 

globe. Macroscopic brain sectioning again revealed no damage within the brain parenchyma, 

either in terms of intraparenchymal petechial hemorrhage or blood in the intraventricular space. 

 

Qualitative fluorescent microscopic change within the optic nerve following TBI 

 

Despite the lack of macroscopic damage in this model, axonal damage was evoked in a 

scattered fashion throughout the brain parenchyma as well as the optic nerve of Thy1-YFP-16 

transgenic mice following TBI. While not the focus of the current communication, within the 
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brain parenchyma itself, scattered axonal damage could be identified within both the superficial 

and deep layers of the neocortex, as well as the dorsolateral thalamus and subcortical white 

matter. These findings are entirely consistent with those recently reported in the same mouse 

injury model using a YFP-H mouse (Greer et al., 2011). Importantly, in the current study these 

axonal changes occurred without any evidence of local petechial hemorrhage and/or any other 

form of tissue disruption, consistent with a mild TBI. Within the optic nerve, the traumatic 

axonal injury typically was induced approximately 1mm proximal to the chiasm. As will be 

detailed below, within this locus, scattered reactive axonal change could be observed in YFP-

expressing axons, while adjacent YFP axons maintained normal structural detail. These findings 

stood in stark contrast to the sham-injured animals, wherein numerous linear/non-swollen YFP-

expressing axonal profiles (Fig.3.1B) could be seen spanning the length of the optic nerve, 

consistent with the initial characterization of the Thy1-YFP-16 transgenic mouse (Feng et al., 

2000). 

Consistent with previous descriptions of traumatically induced axonal damage, the 

injured YFP-expressing axons demonstrated a progression of reactive change over time. At 1h 

post-TBI, the majority of axons manifested normal morphology, with only scattered axons 

demonstrating punctuate, focal YFP-fluorescent axonal swellings (Fig. 3.1C), as well as some 

evidence of initial axonal disconnection (Fig. 3.1D). These scattered punctuate swellings were 

typically found at only one locus along the axon’s length, without any evidence of additional 

proximal to distal involvement. 

By 3h post-TBI, focal axonal disconnection was now prominent together with a 

significant increase in the number and the size (8.32±0.69µm) of the YFP-expressing axonal 

swellings, which now capped both the proximal and distal disconnected segments. Again, these 
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damaged axons were interspersed among adjacent intact fibers (Fig. 3.1E). At this time point, 

those proximal axonal swellings maintaining continuity with the retina (arrow in Fig. 3.1E) 

appeared bulbous/spheroidal in shape. The distal axonal swellings on those axons projecting to 

the chiasm were also spheroidal (arrowhead in Fig. 3.1E). As now both the proximal and distal 

swellings were frequently separated, this suggested axonal retraction or dieback, an issue further 

detailed below. 

By 12h post-TBI, the above described YFP-expressing axonal swellings exhibited further 

maturation (Fig. 3.2A), with axonal disconnection now predominating. The proximal axonal 

swellings had expanded to an area of 28.26±2.00µm
2
, and now revealed a more truncated 

configuration (Fig. 3.2C and 3.2E). In contrast, the distal axonal swellings continued to expand 

(25.53±1.38µm
2
), yet maintained their more rounded/spheroidal shape (Fig. 3.2B and 3.2D). 

From 24h to 48h post-TBI, the distal axonal swellings underwent further expansion 

(42.78±5.88µm
2
 at 24h post-TBI, and 50.84±2.48µm

2
 at 48h post-TBI), with their distribution 

shifted more distally toward the chiasm. Similarly, the proximal axonal swellings now 

redistributed from the initial site of injury to the more proximal segments of the optic nerve 

approaching the globe. In contrast to the distal segments, however, these proximal truncated 

segments showed continued evidence of shrinkage and resorption. 

While these axonal findings at 12, 24, and 48h post-TBI were scattered, routine confocal 

analysis revealed that these reactive axonal changes and dieback were accompanied by an 

apparent focal loss of fluorescence in the region between the detached proximal and distal axonal 

segments. At first, this was interpreted to reflect total fiber loss in this now nonfluorescent 

domain. However, as will be explicated below, this apparent fluorescent fiber loss was not the 
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result of actual fiber dissolution. Rather it was the result of local fluorescence quenching, a 

sequelae of local BBB disruption discussed below. 

 

Electron microscopic evaluation of the traumatic axonal damage 

EM analysis confirmed and supplemented the above described fluorescence analysis. Via 

EM analysis of the wild type mice, we observed as early as 5 to 15 min post-TBI, scattered axons 

located approximately 1mm rostral to the optic chiasm demonstrating initial axonal swelling, 

associated with an accumulation of mitochondria (M in Fig. 3.3). Despite these local reactive 

changes, adjacent axons remained intact and displayed normal ultrastructural detail, all of which 

was consistent with previous descriptions of TAI. In these same regions, edematous-like change 

could also be identified via the expansion of the interstitial space (asterisk in Fig. 3.3). 

Additionally, by 1h post-TBI, there was local dissolution of some damaged axons, consistent 

with the process of disconnection and separation (arrowhead in Fig. 3.3). 

By 3h post-TBI, axonal detachment was common in the Thy1-YFP-16 mice, with both 

the proximal and distal axonal swellings now easily recognized. As observed via confocal 

microscopy above, both proximal and distal swellings were spheroidal, with obvious separation 

between the proximal and distal swellings. Although it proved difficult to follow the course of 

one individual separated axon via electron microscopy, examination of numerous serial sections 

revealed that the proximal and distal swellings were separated by highly vacuolated and 

organelle-devoid axonal cylinders, suggesting that they were the residual axonal segments that 

once joined both the proximal and distal swellings. The proximal swelling appeared reminiscent 

of previous descriptions of TAI in that the swelling itself contained numerous profiles of smooth 

endoplasmic reticulum and vesicles which were interspersed with intact mitochondria and 
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multiple vesicular profiles embedded in an electron-lucent axoplasm (Povlishock et al., 1983). 

This proximal organelle cap typically encompassed a disorganized cytoskeletal core containing 

misaligned neurofilaments and microtubules. The distal swellings also showed organelle 

accumulation and a disorganized cytoskeletal core (Fig. 3.4). However, unlike the proximal 

segments, these swellings were typically electron dense, and they contained numerous dilated 

mitochondria with disorganized cristae (M in Fig. 3.4), all of which appeared consistent with an 

ongoing degenerative process. 

By 24h post-TBI of the Thy1-YFP-16 mice, the distal swellings enlarged further, once 

again containing numerous mitochondria with disordered cristae, as well as occasional 

autophagic vacuoles and lysosomal debris (Fig. 3.5C and D). In contrast to the distal swellings, 

the proximal axonal swellings, similarly to those observed via confocal fluorescence microscopy, 

were now truncated (Fig. 3.5A and B). Typically, these truncated segments were encompassed 

by an intact myelin sheath, and contained numerous organelles, all of which appeared intact (Fig. 

3.5B). Specifically, these truncated appendages contained numerous mitochondria, profiles of 

smooth endoplasmic reticulum and vesicles, as well as cytoskeletal constituents, all of which 

revealed normal morphological detail. In contrast to the distal swellings, not only did these 

proximal swellings reveal intact mitochondria, but importantly, these organelles were found in an 

electron-lucent environment, with no evidence of increased electron density.  

 

Quantitative analysis of the progressive axonal swellings and dieback in the proximal and 

distal segments 

As noted, the quantitative analysis conducted in the current investigation employed 

confocal microscopy to assess the number of axonal swellings per unit area, the total area of 
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axonal swellings per unit area, the percentage of the total area of axonal swellings per unit area, 

as well as the size of axonal swellings per unit area. As noted, these measures were examined 

along the proximal to distal extent of the optic nerve, with a grid analysis (Fig. 3.6) that moved 

both proximally and distally from the point of injury initiation. 

While examining the total number of axonal swellings within each grid, a split-plot 

ANOVA on these data yielded a significant main effect of location (F11, 66 = 81.31, p<0.001), and 

a Time x Location interaction (F22, 66 = 22.44, p<0.001). Figure 3.7 displays a line graph (Fig. 

3.7A) and a bar graph (Fig. 3.7B) of the same data set, along with the results of the Fisher LSD 

tests that examined significant group differences at each axonal location. In the proximal portion 

of the optic nerve, the peak number of axonal swellings per unit area revealed significant 

redistribution from 200µm – 400µm (grid P2) at 12 h post-TBI (97.44±7.61), to 400µm – 600µm 

(grid P3) at 24 h post-TBI (53.22±9.56), and approaching 600µm – 800µm (grid P4) at 48h post-

TBI (46.55±4.05). These data suggested a dieback of the proximal disconnected axons over time. 

Similarly, axonal swellings in the distal segment moved in the opposite direction toward the 

chiasm. Specifically, here the peak number of axonal swellings per unit area moved from 200µm 

– 400µm (grid D2) at 12 h post-TBI (87.56±13.36), to 400µm – 600µm (grid D3) at 24h post-

TBI (87.11±8.78), and approaching 600µm – 800µm (grid D4) at 48 h post-TBI (103.78±1.73). 

These quantitative findings confirmed those qualitative impressions of proximal swelling and 

regression as well as distal expansion and retention, all of which were associated with dieback. 

Comparable to the data discussed in terms of the number of axonal swellings, a similar 

relationship was found in the total area of the axonal swellings per unit area over time along the 

length of the optic nerve. As shown in Figure 3.8, a split-plot ANOVA on these data again 

revealed a significant main effect of location (F11, 66 = 68.85, p<0.001), and a Time x Location 
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interaction (F22, 66 = 19.27, p<0.001). In the proximal segment, the peak total area of axonal 

swellings was redistributed from 200µm – 400µm proximal to the lesion (grid P2) at 12h post-

TBI (2203.67±216.93µm
2
), to 400µm – 600µm proximal to the lesion (grid P3) at 24h post-TBI 

(1502.28±42.09µm
2
), and further to 600µm –800µm proximal to the lesion (grid P4) at 48h post-

TBI (1006.01±137.07µm
2
). In the distal segment, the peak total area of axonal swellings 

migrated from 200µm – 400µm distal to the lesion (grid D2) at 12h post-TBI 

(2271.54±451.63µm
2
), to 400µm – 600µm distal to the lesion (grid D3) at 24h post-TBI 

(3689.21±294.12µm
2
), and further to 600µm – 800µm distal to the lesion (grid D4) at 48h post-

TBI (5267.26±209.76µm
2
). This again demonstrated progressive axonal dieback in both the 

proximal and distal directions along the optic nerve post-TBI. 

Similarly, the analysis on the percentage of the total area of axonal swellings per unit area 

revealed a statistically significant relationship comparable to that described above over time 

along the length of the optic nerve (data not shown). In contrast, the analysis of the size of axonal 

swellings per unit area did not reveal robust significant changes over time along the length of the 

optic nerve (data not shown). 

 

Relationship between the above-described YFP-linked changes and established markers of 

TAI (APP) 

To compare the above results of progressive proximal and distal axonal swellings 

obtained from the YFP-16 transgenic mice to the previous data gained from the use of biological 

markers of axonal pathology, including those targeting APP, a dual fluorescence approach was 

employed. At all time points post-TBI, the use of antibodies to APP alone revealed 

immunoreactive axonal swellings consistent with previous descriptions (Fig. 3.9). However, 
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when these same nerve segments were examined via confocal microscopy to visualize both the 

endogenous YFP as well as the antibodies to the C-terminus of APP, an unanticipated response 

was seen. Specifically, in this approach, we noted that the antibodies to the C-terminus of APP 

mapped exclusively to proximal swellings, with no evidence of distal immunoreactivity, despite 

the presence of numerous large and well-formed distal YFP-positive swellings (Fig. 3.9). 

 

Evidence for blood–brain barrier disruption and the retention of axons in the region of YFP 

fluorescence quenching 

As noted previously, the delayed regional loss of YFP fluorescence observed in the 

current study was potentially related to fluorescence quenching and not to the over-loss of fiber 

coursing through this region. To assess this potential and its impact upon our data analysis, we 

probed the injured YFP optic nerve sections with antibodies to assess the BBB integrity 

(antibodies to endogenous IgG), as well as antibodies targeting the retention of potentially YFP 

fluorescence-quenched axons (the antibody to GFP recognizes the endogenous YFP; Sprecher 

and Desplan, 2008). As early as 1h post-TBI, Texas-Red fluorescent IgG mapped to the region of 

YFP fluorescent loss in the damaged optic nerve (Fig. 3.10A, B, and C), with the caveat that this 

IgG penetrance was not seen in sham YFP expressing animals. The zone of IgG Texas-Red 

fluorescence expanded further at 3h post-TBI (Fig. 3.10D, E, and F), and again mapped to the 

now expanded locus of YFP fluorescence loss. This extravasation of IgG was interpreted to 

reflect a focal perturbation of the BBB, with the passage of serum proteins into the interstitial 

space. Further, it was assumed that this protein passage most likely involved the concomitant 

movement of water, with the formation of edema, all of which were also consistent with our EM 

observations of edematous-like change occurring in the expanding interstitium (Fig. 3.3). It is 



www.manaraa.com

60 

 

important to note that this barrier disruption, associated with IgG passage into the optic nerve, 

was not linked to the presence of either overt or petechial hemorrhage, suggesting a more subtle 

form of BBB perturbation. 

Despite the breakdown of the BBB and the loss of YFP fluorescence, we also observed 

the persistence of intact/unaltered axons, as well as detached and fragmented axons, in these 

same regions via the use of antibodies targeting endogenous YFP. Specifically, as shown in 

Figure 3.11, through the anti-GFP antibody’s positive immunoreactive staining of the 

endogenous YFP, the optic nerve at 24h post-TBI revealed the existence of unaltered axons 

coursing through the locus of fluorescence quenching, together with scattered damaged axonal 

profiles again consistent with TAI. 

 

Discussion 

This study illustrates that a model of traumatic brain injury is capable of evoking 

traumatic axonal change within the optic nerve that can be evaluated in a consistent fashion. The 

current study’s use of YFP-expressing mice provides an unprecedented view into the 

pathogenesis of traumatic induced axonal injury, allowing for the precise identification of the 

initiation of axonal injury and the subsequent progression of axonal swelling and disconnection, 

as well as the ongoing proximal and distal axonal response. To date, others have studied 

traumatic axonal injury using optic nerve stretch (Maxwell et al., 1990; Maxwell and Graham, 

1997; Mohammed Sulaiman et al., 2011; Saatman et al., 2003; Serbest et al., 2007), and these 

studies have provided important information on the progressive changes associated with 

traumatically-induced axonal injury. While one could argue that the reactive changes seen within 

the optic nerve following cFPI mirror those observed with the optic nerve stretch model, 
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differences do exist. Although both injury models involve predominantly the prechiasmatic 

region, cFPI, in contrast to optic nerve stretch (Gennarelli, et al., 1989), involves less prominent 

axonal damage over the length of the optic nerve. Further, following cFPI, blood–brain barrier 

disruption is seen within the optic nerve. This appears consistent with the brain parenchymal 

barrier disruption seen following fluid-percussion brain injury that has been linked to 

concomitant brain deformation and compression (Povlishock et al., 1978). Such differences 

between the optic nerve injury induced by cFPI versus optic nerve stretch suggest that unlike 

optic nerve stretch models, cFPI involves a stretch as well as a compression/deformation 

component that participates in the subsequent pathological response. Irrespective of the causative 

factors and their specific relationship to the pathobiology of TBI, the current animal model offers 

another important characteristic that further distinguishes it from the optic nerve stretch model. 

Specifically, unlike optic nerve stretch, cFPI also evokes TAI throughout the related brain 

parenchyma, which is entirely consistent with our recent finding of TAI within the neocortex, 

hippocampus, and thalamus of comparably injured YFP-H mice (Greer et al., 2011). This is of 

more than academic interest in that we envision that the currently described optic nerve injury 

model via its routine quantitative assessment of axonal damage will allow for rapid preclinical 

therapeutic screening using either intravenous, intraperitoneal, or intrathecal routes of therapy 

administration. The perceived benefit of this current cFPI-induced optic nerve injury model 

resides in the fact that if any therapy is judged to be protective within the optic nerve, such 

protection could then be easily screened in the brain parenchyma of these same animals, thereby 

providing more compelling evidence of generalized therapeutic efficacy. 

In the current investigation using a model of brain and optic nerve injury, we 

demonstrated within the optic nerve, the involvement of multiple axons typically found in 
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relation to other unaltered axons. Consistent with previous descriptions of the pathogenesis of 

TAI, our studies confirmed that this optic nerve involvement did not involve physical transection 

of the axon or the concomitant involvement of local destructive vascular lesions (Maxwell et al., 

1997; Povlishock et al., 1983; Povlishock and Kontos, 1985). Rather, the injury evoked in YFP-

expressing axons was scattered swellings that underwent lobulation, leading to disconnection 

over a 1 to 3h post-TBI period. Particularly significant in the current communication was the 

parallel finding of the relatively rapid dieback of both the proximal and distal disconnected 

segments, together with the rapid regression of the proximal swollen axonal segment, and the 

persistence of the degenerating distal swelling. To our knowledge, these findings have not been 

previously described in either the experimental TBI animal or human forensic literature. As seen 

in the data provided, relatively significant dieback occurred in both the proximal and distal 

segments within 48h following injury, wherein the injured segments moved approximately 0.4–

0.8mm in both the proximal and distal directions. While such dieback has not been previously 

described in the context of TBI, spatially and temporally similar dieback has been described 

following spinal cord injury (Horn et al., 2008; Kerschensteiner et al., 2005; Oudega et al., 1999), 

and laser induced in vitro axonal damage (Hellman et al., 2010). With spinal cord injury such 

dieback has been linked to macrophage infiltration and possible substrate modification (Busch et 

al., 2009; Horn et al., 2008), while in vitro studies suggest that calcium dysregulation plays an 

important role (Hellman et al., 2010). Given the differences between TBI and in vivo spinal cord 

injury and in vitro laser injury, the actual mechanisms involved in this dieback remain unclear, 

and perhaps may involve a combination of all the above factors. In relation to this process of 

axonal dieback, it is also of note that the singular distal swellings observed in the current study 

are at variance with the Wallerian changes described following physical transection of the optic 
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nerve, wherein Wallerian degeneration was associated with relatively dramatic axonal beading 

along the continuous axonal segment distal to the transection (Beirowski et al., 2010). This 

difference is most likely consistent with the nature of TAI, which does not evoke the dramatic 

local destructive change typically associated with the studies of Wallerian degeneration evoked 

by optic nerve transection (Beirowski et al., 2010), and/or the fiber damage seen with optic nerve 

ligation or crush (Knöferle et al., 2010). Although it is difficult to directly extrapolate from a 

static image the actual progression of a dynamic process, our parallel EM analysis proved useful 

in assessing the fate of the proximal and distal swellings. As noted, the distal swellings routinely 

demonstrated increased electron density, together with significant mitochondrial disruption, all 

of which are consistent with their degeneration and subsequent dieback. 

In concert with the above observations focusing on the distal swellings, our evaluation of 

the proximal axonal swellings also provided significant, previously unreported insight into the 

progression of TAI. Our quantitative and qualitative studies confirmed the dieback of the 

proximal axonal swellings that moved proximally over time. As noted, such injured axons were 

seen adjacent to other intact fibers, although this relationship was somewhat obscured by the 

presence of local tissue edema and fluorescence quenching, an issue which will be discussed 

below. While the proximal segment, like its distal stump, revealed dramatic dieback, it also 

manifested a previously unappreciated response in which it underwent a relatively rapid 

transition from an enlarged and swollen to a thinned and truncated appendage. Parallel 

ultrastructural studies substantiated this finding and suggested that the dieback of the axonal 

swelling and its formation of the truncated appendage were not related to overt degeneration, but 

rather some form of axonal reorganization. In fact, this dynamic reorganization appeared 
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consistent with the conversion of anterograde to retrograde axonal transport, which has been 

suggested in other experimental studies (Martz et al., 1989; Sahenk and Lasek, 1988). 

In concert with the above observations, another unanticipated finding centered on the 

observation that antibodies targeting C-terminus APP mapped exclusively to the proximal axonal 

segments, with virtually no evidence of distal swelling immunoreactivity at all the delayed time 

points assessed. Antibodies to APP have been widely used in animal studies and human forensic 

analysis (Hortobagyi et al., 2007; Sherriff et al., 1994a, 1994b; Stone et al., 2000), yet there has 

been no widespread appreciation of what component of the injured axon is delineated by APP. 

Further complicating this issue is also the fact that there has been no consideration of the 

potential that different antibodies targeting different APP epitopes may yield different responses. 

Our antibodies which target APP’s C-terminus consistently mapped to the proximal swelling, 

without targeting to the distal swelling. In contrast, in studies of Wallerian degeneration within 

the optic nerve, using antibodies targeting the N-terminus of APP, Beirowski and colleagues 

(2010) demonstrated APP targeting of the distal swelling, although in these studies there was no 

attempt to evaluate the immunoreactivity of the proximal axonal segment. The difference 

between our study and that of Beirowski and colleagues most likely reflects epitope specificity, 

with the caveat that the degenerative change ongoing in the distal degenerating segment may 

undergo proteolytic cleavage of the C-terminus with the exposure of the N-terminus, an issue 

which will obviously require further evaluation. This observation also takes on increased 

importance in the context of human forensic studies, wherein the use of antibodies to the N-

terminus is the norm, raising the issue as to whether the use of such antibodies may lead to either 

an over- or under-appreciation of the overall burden of axonal injury both in studies of adult 

brain injury and child abuse. 
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Although we have emphasized the scattered nature of axonal change occurring within the 

optic nerve, we have also observed that this phenomenon was negatively influenced by the 

presence of local CNS BBB disruption and edema, which correlated with local quenching of the 

endogenous YFP fluorescence. Such non-hemorrhagic BBB disruption is a well-recognized 

feature of mild TBI, and our lab has previously identified comparable barrier disruption and 

protein extravasation within the brainstem and neocortex following TBI (Kelley et al., 2007; 

Povlishock et al., 1978). The linkage of BBB disruption to fluorescent quenching is supported by 

the observation that all zones of local fluorescence loss mapped precisely to concomitant 

alterations in BBB status, as assessed by the passage of the endogenous immunoglobulin IgG. 

The suggestion here is that the parallel movement of water with the IgG participated in the 

fluorescent quenching. While this phenomenon has not been described in the context of 

fluorescently-expressing transgenic animals, it has been demonstrated that water and solvent 

properties of water can result in fluorescence quenching by multiple mechanisms such as 

hydrogen-bond interactions (Oshima et al., 2006), photoionization (Sadkowski and Fleming, 

1980), the transition to a close-lying energy level (Tobita et al., 2001), intersystem crossing 

(Seliskar and Brand, 1971), and specific solute–solvent interactions (Ebbesen and Ghiron, 1989). 

Since optic nerve edema most likely involves significant water generation (Donkin and Vink, 

2010), it is not unreasonable to assume that this water can participate in fluorescence quenching 

via either one or several of the above-described mechanisms. The correctness of this assumption 

is further supported by our parallel investigations using antibodies to the endogenous YFP, 

which consistently labeled fibers independent of their YFP fluorescence, via our reliance on a 

chromogen-based approach. This strategy confirmed that the loss of fluorescence was most 

likely due to quenching, and not associated with actual fiber loss. 
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In summary, this study reveals TBI-induced TAI within the optic nerve. Further, these 

observations within the optic nerve provide unique insight into the pathobiology associated with 

TAI, particularly in terms of axonal swelling, disconnection, and proximal and distal dieback 

changes not well appreciated in the highly complex brain environment. We also demonstrate that 

this optic nerve approach provides via its regional specificity, the opportunity for rigorous 

quantification. This provides the potential for multiple future applications utilizing the rigorous 

assessment to evaluate various therapeutic interventions in attenuating axonal damage, while also 

permitting the evaluation of anterograde downstream neuronal and/or synaptic plasticity, and/or 

the assessment of retrograde upstream neuronal injury. 
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Figure 3.1 A macroscopic view of the injured brain and the optic nerve together with the 

microscopic evidence of axonal damage in the optic nerve of Thy1-YFP-16 mice. Note that upon 

macroscopic examination, no significant contusion, mass lesion or hemorrhage can be identified 

within either the brain or the optic nerve following TBI (A). Via confocal microscopy, the optic 

nerve of the sham injured mice reveals a robust distribution of YFP positive axons maintaining 

continuity with no evidence of axonal swelling (B). At 1 hour post TBI, the majority of YFP 

positive axons manifest normal morphology, with only scattered, punctate axonal swelling 

(arrow in C) and isolated axonal disconnection (grid in D). At 3 hours post TBI, note the increase 

in both the number and the size of axonal swellings in both the proximal (arrow in E) and distal 

segments (arrow heads in E). Also note that the disconnection of many damaged axons occurs 

interspersed among adjacent intact fibers. In this image, the chiasm is to the left and the globe 

lies to the right. All scale bars, 20μm. 
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Figure 3.2 Confocal microscopic evidence of axonal swellings within the optic nerve of Thy1-

YFP-16 mice at 12 hours post TBI. Note that the axonal swellings now manifest further 

maturation (A). Additionally note that the distal axonal swellings expand to form spheroids (B 

and D), while the proximal axonal swellings now assume a more truncated form (C and E). Scale 

bar, 200µm (A), 20μm (B, C, D and E). 
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Figure 3.3 Electron microscopic evidence of the progression of axonal damage in the optic nerve 

of wild type mice from 5 minutes to 1 hour post TBI. Note that at 5 minutes and 15 minutes post 

TBI the initial axonal swellings are associated with accumulation of mitochondria, some of 

which are swollen (M). Also note the related expansion of the extracellular space consistent with 

the presence of edema (asterisk). Lastly, note that at 1hour post TBI damaged axons reveal local 

dissolution (arrow head) consistent with the process of disconnection which is present in the 

optic nerve of Thy1-YFP-16 mice. All scale bars, 1μm. 
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Figure 3.4 Electron microscopic evidence of axonal swelling in the optic nerve of Thy1-YFP-16 

mice at 3 hours post TBI. At this time point the distal axonal swellings display continued 

maturation, with the accumulation of numerous vesicles and organelles which overlie a 

disorganized cytoskeletal core (A). Note that in the enlarged image (B), the dilated mitochondria 

exhibit disorganized cristae (M). Also note that in contrast to the swollen damaged axon, the 

adjacent axon remains intact (arrow in A). Scale bar, 2μm (A), 1μm (B). 
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Figure 3.5 Electron microscopic evidence of progressive axonal swelling in the optic nerve of 

Thy1-YFP-16 mice at 24 hours post TBI. Now the proximal axonal swelling is more truncated 

(A and B), with numerous vesicles and smooth endoplasmic reticulum accumulating in the 

swollen axonal segment (B), while the related mitochondria remain intact (B). In contrast, the 

distal axonal swelling continues to expand and becomes increasingly rounded (C). Note the 

swollen mitochondria with disordered cristae (D) accumulating within the swollen bulb (C and 

D). Also note the presence of isolated continuous non-axotomized fibers coursing adjacent to the 

swollen axons at this time point (C and D arrow). All scale bars, 1µm. 
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Figure 3.6 The location of 12 grids along the YFP expressing optic nerve for quantitative 

assessment. In this study, each grid encompasses 200μm x 200μm. From the initial locus of TAI, 

grids P1 to P6 are placed along the proximal segment approaching the globe, while grids D1 to 

D6 are located in the distal segment approaching the chiasm. Scale bar: 200μm. 
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Figure 3.7 A plot of the number of axonal swellings per unit area and their distribution along the 

optic nerve over time. In both the line (A) and bar (B) graph, significant difference exists 

between the number of axonal swellings each time point at the related region (p<0.05). The line 

graph (A) best illustrates the change of axonal swelling distribution along the optic nerve over 

time (blue-12 hour, red-24 hour and green-48 hour). Note that the peak number of proximal 

axonal swellings moves from P2 to P3 and to P4 from 12 hours to 24 hours and to 48 hours post 

TBI respectively. The peak number of distal axonal swellings also shows significant 

redistribution from D2 to D3 and further to D4 from 12 hours to 24 hours and further to 48 hours 

post TBI respectively. This is consistent with progressive axonal dieback both proximally and 

distally over time post TBI. The bar graph (B) shows, in more detail, the statistical difference at 

each location. Specifically, in those segments 200μm-600μm proximal to the initial focus of 

injury (P2 and P3), the number of axonal swellings at 12 hours post TBI is significantly higher 

than those of 24 hours and 48 hours post TBI. These confirm the qualitative impression of the 

regression of proximal axonal swellings. In contrast, at 600μm-1200μm distal to the initial focus 

of injury (D4, D5 and D6), the number of axonal swellings at 24 hours post TBI is higher than 

that of 12 hours post TBI, while at 48 hours post TBI the number is again significantly higher 

than those of 12 hours and 24 hours post TBI. These confirm the qualitative impression of the 

retention of distal axonal swellings (* p<0.05, ** p<0.01, *** p<0.001). 
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Figure 3.8 A plot of the total area of axonal swellings per unit area and their distribution along 

the optic nerve over time. Here again we display both in line (A) and bar (B) graph formats the 

total area of axonal swellings per unit area, which equals the sum of the area of each swellings in 

each individual grid. The line graph (A) best illustrates the change of the total axonal swelling 

area and its distribution along the optic nerve over time (blue-12 hour, red-24 hour and green-48 

hour). Note that the peak of total area of proximal axonal swellings moves from P2 at 12 hours, 

to P3 at 24 hours and further to P4 at 48 hours post TBI. The peak of total area of distal axonal 

swellings shows significant redistribution from D2 at 12 hours, to D3 at 24 hours and further to 

D4 at 48 hours post TBI. This again demonstrates progressive axonal dieback both proximally 

and distally post TBI. The bar graph (B) reveals in more detail the statistical deference at each 

individual location. Specifically, in those segments 200μm-600μm proximal to the initial focus 

of injury (P2 and P3), the total area of axonal swellings at 12 hours post TBI is significantly 

higher than those of 24 hours and 48 hours post TBI. These confirm the qualitative impression of 

the regression of proximal axonal swellings. In contrast, at 400μm-800μm distal to the initial 

focus of injury (D3 and D4), the total area of axonal swellings at 24 hours post TBI is higher 

than that of 12 hours post TBI. At 400μm-1200μm distal to the initial focus of injury (D3, D4, 

D5 and D6), the total area of axonal swellings at 48 hours post TBI is higher than that of 12 

hours post TBI. These again suggest the retention of distal axonal swellings over time (*p<0.05, 

**p<0.01, ***p<0.001).    
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Figure 3.9 The relationship between the YFP-linked axonal changes and the APP 

immunofluorescent staining via confocal microscopy. As noted above, axonal swellings can be 

readily visualized by their YFP fluorescence at both the proximal and the distal optic nerve 

segments at 12 hours post TBI. Note that at this time point the APP immunoreactivity is found 

exclusively in the proximal segments, where it co-localizes with the YFP fluorescence (yellow in 

the merged image). In contrast, in the distal segment, there is no APP immunoreactivity despite 

the presence of numerous YFP positive axonal swellings. Here the chiasm is to the left and the 

globe is to the right. Scale bar, 200µm.    
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Figure 3.10 Texas-Red-conjugated-IgG maps to the region of YFP fluorescence quenching in 

the optic nerve of Thy1-YFP-16 mice. Note that at 1 hour post TBI, the region of fluorescent loss 

(A) directly correlates with the IgG immunoreactivity (B and C). Further, note the locus of YFP 

fluorescent loss is expanded at 3 hours post TBI (D), which also corresponds to the Texas-Red-

conjugated IgG localization (E and F). Scale bar, 500µm.           
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Figure 3.11 The retention of YFP expressing axons in the region of fluorescence quenching. 

With confocal microscopy, at 24 hours post TBI, the YFP fluorescently-quenched axons can now 

be visualized by antibodies targeting GFP (arrows) in a distal optic nerve segment. This suggests 

that despite axonal YFP fluorescence quenching, intact axons are retained in the same field. 

Scale bar, 50µm. 
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CHAPTER FOUR 

 DIFFUSE AXONAL INJURY IN THE OPTIC NERVE IS NOT ASSOCIATED WITH 

RETINAL GANGLION CELL LOSS  

 

Abstract 

Much of the morbidity following traumatic brain injury (TBI) is associated with traumatic 

axonal injury (TAI). Although most TAI studies focus on the callosal white matter, visual system 

involvement has been increasingly identified. To assess visual system TAI and probe various 

therapeutic approaches we developed a mouse model of optic nerve TAI. However, in this model it is 

unknown if TAI causes retinal ganglion cell (RGC) death, an issue of importance to therapeutic 

intervention. YFP-16 transgenic mice were subjected to mild TBI and followed from 2 days to 3 

months. RGC death was evaluated qualitatively by TUNEL and cleaved caspase-3 immunostaining. 

RGC survival was quantified by counting Brn3a immunoreactivity and phospho-C-Jun 

immunolabeling. YFP positive cells in the RGC layer revealed no loss from 2 days to 28 days post-

TBI. No TUNEL+ or cleaved caspase-3 immunoreactive RGCs were observed from 2 days to 3 

months post-TBI. Brn3a immunoreactive RGC quantification revealed no significant RGC loss with 

concomitant phospho-c-Jun expression elevated up to 3 months post-TBI. Parallel EM analysis 

revealed no evidence of RGC death. These findings confirm many of the unique features of TAI, and 

suggest that this model offers advantages for future studies focusing on visual system TAI, its 

therapeutic management and its potential reorganization and repair. 

Key words: traumatic brain injury; traumatic axonal injury; visual system; YFP-16 transgenic 

mice; retinal ganglion cell survival 
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Introduction 

Traumatic brain injury (TBI) is a major national and global health problem which can 

lead to death and serious neurological dysfunction. Much of the mortality and morbidity of TBI 

is associated with diffuse traumatic axonal injury (TAI) (Christman et al., 1994; Li and Feng, 

2009; Li et al., 2010; Zemlan et al., 1999). Although previous studies of TAI have focused on the 

callosal and rostral subcortical white matter, there is increased recognition that the visual system 

white matter is equally sensitive to injury (Ding et al., 2001; Foda and Marmarou, 1994; 

Gleckman et al., 2000; Palmer et al., 2010). This is reflected in both the military and civilian 

populations. In a study on the incidence of combat-related eye injuries, the Defense Veterans 

Brain Injury Center (DVBIC) reported that 80 percent of over 3,900 troops sustaining TBI had 

some form of visual problem (Zampieri, 2007).  

To date, few have addressed this issue in either animal models or humans to gain better 

insight into the pathobiology of this visual damage and/or its potential treatment. To address this 

issue, we have recently characterized a model of diffuse traumatic axonal injury in the mouse 

visual system wherein we found diffuse/scattered axonal swellings, together with their 

disconnection, dieback and reorganization overtime (Wang et al., 2011).  

Given the TAI observed in this system, an obvious question relevant to any future 

investigations including potential therapeutic intervention centers on the fate of the cell bodies of 

origin of these diffusely damaged optic nerve axons. Historically, it has been reported that 

virtually any form of damage to optic nerve results in dramatic retinal ganglion cell (RGC) loss. 

Complete intraorbital optic nerve transection has been shown to result in the loss of the majority 

of RGCs within 2 weeks (Berkelaar et al., 1994; Kielczewski et al., 2005; Peinado-Ramon et al., 
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1996). With rat optic nerve crush, Dibas (2010) reported that the number of RGCs labeled 

retrogradely from superior colliculus, decreased by 47% at 7 days post injury, reaching a 76% 

loss at 2 weeks post injury. In a guinea-pig optic nerve stretch model, a model assumed to 

replicate the important features of TAI, Mohammed Sulaiman (2011) observed a continued loss 

of RGCs beginning at 1 week and further increasing over the next 12 weeks, with only 60% of 

RGCs remaining at 12 weeks post TAI. Further they recognized that this cell loss was associated 

with RGC apoptosis at 2, 3, 8 and 12 weeks, with the peak number of apoptic RGCs occurring at 

3 weeks post injury. In a mouse optic nerve stretch model, Saatman (2003) reported that the 

number of RGCs, retrogradely labeled by Fluorogold injected into the superior colliculus, 

dramatically decreased by over 50% by 1 day and at 2 weeks after stretch injury, in contrast to 

the sham animals.  

Based upon these studies, it would seem that retinal ganglion cell death would be the 

foregone conclusion of diffuse axonal injury in the optic nerve. However, our previous work in 

the diffusely injured optic nerve suggested otherwise (Wang et al., 2011). Specifically, in this 

TAI model system we demonstrated that once disconnected, the proximal axonal segment 

underwent a relatively rapid transition from an enlarged and swollen axonal segment to a thinned 

and truncated appendage. Further this transition was not related to degeneration, but rather 

axonal reorganization and repair (Wang et al., 2011). Collectively, these observations in the 

proximal axotomized segment are entirely consistent with an intact axon maintaining continuity 

with viable RGCs that are capable of continued protein synthesis and organelle stability. 

Support for the premise of RGC survival also follows from the work of Povlishock and 

colleagues who evaluated in the neocortex those neuronal cell bodies linked to diffuse axonal 

injury (Greer et al., 2011; Lifshitz et al., 2007; Singleton et al., 2002). Specifically, using 
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multiple experimental approaches, they demonstrated that TAI did not result in either neocortical 

or thalamic neuronal death. Rather it triggered atrophic change. In these studies, it was assumed 

that the subtle axonal changes precipitated by TAI, did not trigger the massive ionic influx and 

dysregulation associated with axonal transection or crushing, thereby protecting the neuronal cell 

body, a premise that may also carry forward to the diffusely injured optic nerve.  

Because of the importance of these issues to our understanding of the pathobiology and 

treatment of TAI in the visual system and because of the predominance of the literature 

suggesting that RGC loss is the inevitable consequence of any form of optic nerve damage, the 

current study comprehensively evaluated the response of RGCs to diffuse TAI. Specifically, 

using multiple markers of neuronal cell death together with rigorous qualitative and quantitative 

assessments of RGC integrity, we demonstrate that diffuse traumatic axonal injury within the 

optic nerve is not associated with significant ganglionic cell death. 

 

 

Material and methods 

To study the cell death or survival of RGCs following diffuse traumatic axonal damage 

within the optic nerve, we utilized Thy1-YFP-16 transgenic mice which express YFP under the 

promoter Thy1 within the retina and the optic nerve fibers (Feng et al., 2000). This strategy, as 

previously described (Wang et al., 2011), was employed to directly visualize the YFP cells in the 

RGC layer under routine fluorescent and/or confocal microscope, with the endogenous 

expression of YFP (Feng et al., 2000).  

 

Animal Surgery and Perfusion  
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All protocols used in this study were approved by the Institutional Animal Care and Use 

Committee (IACUC) of Virginia Commonwealth University. Thy1-YFP-16 transgenic mice were 

obtained from the Jackson Laboratory (Bar Harbor, ME), and were breed, genotyped and 

maintained as heterozygotes as described previously (Wang et al., 2011). Adult 2 month old 

Thy1-YFP-16 mice (20–25g) were subjected to mild central fluid percussion injury (1.40±0.05 

atmospheres) as previously described (Wang et al., 2011, Dixon et al., 1987). The fluid pressure 

pulse in this model resulted in a brief deformation of the brain and induced diffuse traumatic 

axonal injury in the optic nerve approximately 1mm proximal to the chiasm (Wang et al., 2011). 

Sham-injured animals received the same surgeries, with the absence of the injury. Animals were 

allowed to survive for either 2 days, 7 days, 14 days, 28 days or 90 days following injury. At the 

appropriate survival times, animals were euthanized via an intraperitoneal overdose of sodium 

pentobarbital, and then transcardially perfused with 100ml heparinized normal saline, followed 

by 200ml 4% paraformaldehyde in Millonig’s buffer. For electron microscopy (EM) analysis, 

animals were perfused with 200ml 2% paraformaldehyde and 2.5% glutaraldehyde in Millonig’s 

buffer. At each time point, 9 animals were injured, of which 2 animals were prepared for retinal 

whole mount observation to allow for a qualitative assessment of any potential loss of YFP-

expressing cells in the RGC layer. Five mice were prepared for serial sectioning on a cryostat to 

permit immunocytochemical processing for markers of cell death while also allowing for the 

quantitative assessment of any potential RGC loss. Lastly, 2 animals were prepared for EM 

analysis to identify any potential neuronal damage or loss in the RGC layer. These injured 

animals which were evaluated at all time points, were prepared together with 6 sham injured 

mice per time point (1 for retinal whole mount observation, 3 for qualitative 

immunocytochemistry and quantitative assessment, and another 2 for EM). 
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Retinal whole-mount preparation  

Following transcardial perfusion, the extraocular muscles were cut from the globe, the 

optic nerve was transected immediately behind the globe, and the eye was dissected from the 

orbit. The cornea was punctured with an 18 gauge needle, cut into 4 quadrants, and opened to the 

limbus using two sets of forceps. The lens was removed and the retina was then separated from 

the pigmented layer, and immersed in 4% paraformaldehyde in Millonig’s buffer for 4 hours. 

Next, the retina was washed thoroughly with phosphate buffered saline (PBS) 5 x 10 minutes. 

The retina was then cut into four quadrants, and mounted flat on a glass slide with Vectashield 

Hardset Mounting Medium with DAPI (Vector Laboratories), and cover-slipped for image 

capture with a Leica TCS-SP2 AOBS confocal microscope (Wetzlar, Germany).  

 

Retinal cryostat section preparation  

After the retina was separated from the pigmented layer as described above, fixation was 

continued in 4% paraformaldehyde in Millonig’s buffer overnight. After washing in PBS 5 x 10 

minutes, the retina was immersed in 30% sucrose in PBS overnight. The pair of retinal cups from 

the same animal was then embedded side to side and frozen to -20
o
C in optimal cutting 

temperature (OCT) compound (Electron Microscopy Sciences, Cat No.62550-01, Hatfield, PA, 

U.S.A.). Twelve micrometer sections were then cut with a cryotome (Shandon Scientific Ltd., 

Cheshire, U.K.). Serial sections were collected on Superfrost
®
/Plus microscopic glass slides 

(Fisher Scientific, catalog no.12-550-15, U.S.A.), with four serial sections of each eye on each 

slide for a total of 8 sections on each slide, and stored at -20
o
C for further use. 
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Immunohistochemistry  

TUNEL immunohistochemistry  

To detect nuclear fragmentation within RGCs, frozen retinal sections (3 random slides 

from each injured and sham injured animal) were processed at the designated 2 days, 7 days, 14 

days, 28 days and 90 days time points, using a terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) kit (ApoTag In Situ Apoptosis Detection Kit; S7101, S7160 and S7165, 

Millipore), using modification of the manufacturer’s protocol. Frozen retinal sections were 

obtained and warmed to room temperature for 30 minutes. They were then rinsed 2 x 5 minutes 

in PBS, and post fixed in precooled ethanol: acetic acid (2:1) solution for 5 minutes at -20
o
C in a 

humidified chamber. After washing 2 x 5 minutes in PBS, the sections were incubated in 

50μg/ml proteinase K (Invitrogen, Cat No. 25530-015) in PBS for 30 minutes at room 

temperature. Once again, sections were washed 2 x 5 minutes in PBS, and incubated in the 

proprietary equilibration buffer for 30 minutes at room temperature. After clearing the 

equilibration buffer, the sections were incubated with working strength terminal 

deoxynucleotidyl transferase (TdT) enzyme in a humidified chamber for 1.5 hours at 37°C. The 

slides were then rinsed by the proprietary stop/wash buffer 2 x 10 minutes at room temperature, 

and washed in PBS 3 x 5 minutes. The sections were then incubated in the mouse anti-

Digoxigenin (1:250, Roche, Cat. No. 11333062910) at 4
o
C in a humidified chamber overnight. 

After rinse in PBS 4 x 5 minutes, the sections were incubated with secondary antibody Alexa 

fluor 594-conjugated goat anti-mouse IgG (1:250, Invitrogen) for 1 hour at room temperature. 

Then the slides were washed 4 x 2 minutes in PBS, cover-slipped with Vectashield Hardset 

Mounting Medium with DAPI (Vector Laboratories) for confocal microscopic analysis with a 

Leica TCS-SP2 AOBS confocal microscope (Wetzlar, Germany). To generate positive control, 
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sham-injured retinal sections pretreated with deoxyribonuclease (DNAase, 1,000U/ml) at room 

temperature for 10 minutes were used. To generate a negative control, the TdT enzyme treatment 

was deleted. 

 

Cleaved-caspase-3 immunohistochemistry  

To detect apoptosis within RGCs, frozen retinal slides adjacent to those prepared for 

TUNEL staining (3 slides per animal), were selected for cleaved-caspase-3 immunofluorescent 

staining. Sections were warmed to room temperature for 30 minutes, and then rinsed 3 x 10 

minutes in PBS. Following pretreatment with 10% normal goat serum (NGS) with 2% bovine 

serum albumin (BSA) and 0.5% Triton X in PBS at room temperature for 2 hours, they were 

incubated overnight at 4
o
C with the primary antibody rabbit anti-cleaved-caspase-3(Asp175) 

(1:500, Cell Signaling Technology, Cat. no. 9661), in 10% NGS with 2% BSA and 0.5% Triton 

X in PBS. The sections were washed 6 x 10 minutes with 1% NGS with 1% BSA and 0.2% 

Triton X in PBS at room temperature, followed by incubation with the secondary antibody Alexa 

fluor 594-conjugated goat anti-rabbit IgG (1:250, Molecular probes, Invitrogen) in 1% NGS with 

1% BSA and 0.2% Triton X in PBS for 2 hours at room temperature. Then the sections were 

washed 4 x 5 minutes in PBS and 2 x 5 minutes in 0.1M sodium phosphate buffer, and cover-

slipped with Vectashield Hardset Mounting Medium with DAPI (Vector Laboratories) for 

confocal microscopic analysis. 

 

Brn3a immunohistochemistry  

Besides the qualitative studies of the RGCs detailed above (TUNEL and caspase-3 

immunostaining), quantitative evaluation of the number of RGC was performed using the anti-



www.manaraa.com

86 

 

Brn3a antibody immunohistochemistry, which has been shown to specifically detect rodent 

RGCs (Galindo-Romero et al., 2011; Nadal-Nicolas et al., 2009). This approach provided 

advantages over routine YFP analysis in that unlike the YFP which can be found in RGCs as 

well as amacrine cells (Feng et al., 2000), Brn3a is confined solely to RGCs (Xiang et al., 1995). 

For Brn3a immunostaining, three slides from equivalent eccentricity from the optic nerve head, 

and adjacent to those utilized for TUNEL and Caspase-3 immunostaining were employed. These 

slides were warmed to room temperature for 30 minutes. Then the sections were rinsed 3 x 10 

minutes in PBS, and pretreated with 10% NGS with 2% BSA and 0.5% Triton X in PBS at room 

temperature for 2 hours. Endogenous mouse IgG was blocked by anti-mouse Ig Reagent derived 

from a mouse host (Mouse on Mouse Kit, MOM™; Vector Laboratories; Burlingame, CA). 

Then the sections were washed 3 x 10 minutes in 10% NGS with 2% BSA and 0.5% Triton X in 

PBS, and then incubated overnight at 4
o
C with the primary antibody mouse anti-Brn3a 

monoclonal antibody (1:125, Millipore, MAB1585) in 10% NGS with 2% BSA and 0.5% Triton 

X in PBS. Then the sections were washed 6 x 10 minutes with 1% NGS with 1% BSA and 0.2% 

Triton X in PBS at room temperature, followed by incubation with the secondary antibody Alexa 

fluor 568-conjugated goat anti-mouse IgG (1:500, Molecular probes, Invitrogen) in 1% NGS 

with 1% BSA and 0.2% Triton X in PBS for 2 hours at room temperature. Then the sections 

were washed 4 x 5 minutes in PBS and 2 x 5 minutes in 0.1M sodium phosphate buffer, and 

cover-slipped with Vectashield Hardset Mounting Medium with DAPI (Vector Laboratories) for 

epifluorescent microscopic analysis. A Nikon Eclipse 800 microscope (Tokyo, Japan) fitted with 

an Olympus DP71 digital camera (Olympus, Center Valley, PA) was utilized with the 

appropriate excitation/emission filters.  
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Phosphorylated c-Jun immunohistochemistry  

In addition to assessing markers of neuronal death (TUNEL and caspase 3) as well as 

survival (Brn3a), we also employed other antibodies linked to potential neuronal survival and 

repair. Specifically, based on our recent experience with neocortical axonal injury (Greer et al., 

2011), we employed antibodies to phospho-c-Jun. Three slides containing eight frozen retinal 

sections, adjacent to slides used for TUNEL, cleaved-caspase-3 staining and Brn3a staining, 

were chosen from each animal for immunostaining with the primary antibody polyclonal rabbit 

anti-phospho-c-Jun (Ser63) (1:100; Cat. no. 9261, Cell Signaling; Danvers, MA), followed by 

the secondary antibody Alexa fluor 633 or Alexa fluor 594-conjugated goat anti-rabbit IgG 

(1:200, Molecular probes, Invitrogen). The same protocol for Brn3a immunostaining was utilized, 

except for the replacement of PBS by Tris-buffered saline (TBS). Further, adjacent slides were 

chosen for Brn3a and phospho-c-Jun double labeling and the observation under confocal 

microscopy.  

 

Electron microscopy  

For electron microscopic (EM) analysis, additional mice were employed to include 2 

injured YFP-16 mice, and their appropriate sham injured controls per time point. To achieve 

optimal ultrastructure detail, YFP-16 mice were first perfused with 100ml heparinized normal 

saline, followed by 200ml 2% paraformaldehyde and 2.5% glutaraldehyde in Millonig’s buffer. 

After 15 minutes fixation, the retina was removed as described above, and immersed in 2% 

paraformaldehyde and 2.5% glutaraldehyde in Millonig’s buffer overnight, together with the 

brain and the optic nerve. Then the fixation prepared retina was osmicated in 2% OsO4 in 0.1M 

sodium phosphate buffer, dehydrated in alcohol with 1% uranyl acetate, embedded in epoxy 
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resin (Embed-812; Electron Microscopy Sciences, Hatfield, PA), mounted on plastic slides 

(Thomas Scientific Co., Swedesboro, NJ) and cover-slipped. After resin curing, the plastic slides 

were examined via routine light microscopy to identify RGCs, using a Nikon Eclipse E800 

microscope fitted with an Olympus DP71 digital camera (Olympus, Center Valley, PA). Once 

identified, these sites were excised, mounted on plastic studs, and thick sectioned to the RGC 

layer using an ultramicrotome (Leica Ultracut R; Leica, Wien, Austria). Serial 40nm sections 

were cut and mounted onto Formvar-coated single-slotted grids. The grids were then stained with 

5% uranyl acetate in 50% methanol for 2 minutes and 0.5% lead citrate for 1 minute, and 

visualized using a JEM 1230 electron microscope (JEOL Ltd., Tokyo, Japan). 

 

Quantification of RGC and statistical analysis  

To quantify the number of RGCs, the Brn3a immunofluorescently labeled retinal sections 

were captured using routine epifluorescent microscopy. Specifically, Brn3a retinal section (4 

sections per eye, with each slide containing 8 sections from both eyes) was digitally acquired at 

20 x magnification moving from side to side of the retina covering its entire extent, parallel to its 

curvature. Each retinal section was reconstructed using 7-9 images taken along the extent of the 

retina (Figure 4.4 A). To quantify the number of RGCs, the central image of those acquired was 

selected together with the other next adjacent image from both sides (Figure 4.4 A arrow). For 

each selected image, the number of Brn3a positive RGCs was counted in a 0.05 mm
2
 (0.435 mm 

x 0.115 mm) grid expanding along the image parallel to the alignment of the RGCs (Figure 4.4 

B). This process of acquisition and counting was repeated for each of the retinal sections on the 

slide for a total of 72 retinal images per animal (3 images/section x 8 sections/slide x 3 

slides/animal = 72 images/animal). For each animal, the number of Brn3a positive RGCs was 
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calculated by summating the number of Brn3a positive RGCs from the 72 images, expressing 

them as mean ± standard deviation. To test the difference of the number of Brn3a positive RGCs 

overtime post injury, one way ANOVA was conducted. 

 

Results 

Whole mount retina YFP assessment following TAI in the optic nerve  
 

The YFP expressing retinal whole mounts were well preserved, with RGC axons 

converging toward the optic disc, without any evidence of axonal swelling. In the injured 

animals, the YFP positive cells in the RGC layer from both the center of the retina and its more 

peripheral regions, did not reveal overt loss or change in fluorescent intensity from 2 days, 7 

days to 14 days and 28 days post TBI compared to the retina harvested from the 2 days sham 

animal (Figure 4.1).  

 

TUNEL and caspase 3 assessment in the RGC layer following TAI in the optic nerve  

To assess the potential for any axonal damage-induced death of RGCs, the TUNEL 

method was utilized to identify nuclear fragmentation within the RGC layer as a consequence of 

axonal injury. Positive control retinal sections from DNAase treated YFP retinal sections 

demonstrated positive staining in the nuclei of cells at the different layers of the retina (Figure 

4.2). In retina from sham-injured animals, no TUNEL positive cells were observed in the RGC 

layer (data not shown). Importantly, no TUNEL positive cells were observed within the RGC 

layer at any time point from 2 days to 90 days assessed post injury (Figure 4.2).  

Besides TUNEL analysis, we also assessed the potential for RGC apoptosis induced by 

diffuse traumatic axonal injury of the optic nerve. Specifically, cleaved caspase-3 
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immunostaining approach was utilized to identify apoptosis in the RGC layer from 2 days to 90 

days after axonal damage. Positive control retinal sections from P2 mice pups demonstrated 

positive staining of the cleaved caspase-3 (Figure 4.3). In retina from sham-injured animals, no 

positive staining of the cleaved caspase-3 was observed in the RGC layer (data not shown). 

Importantly, no cleaved caspase-3 immunoreactive cells were observed within the RGC layer 

from 2 days to 90 days post-TBI (Figure 4.3). 

 

Quantitative analysis of the RGCs following TAI in the optic nerve  
 

Besides the use of TUNEL and caspase-3 immunostaining to detect RGC death, 

quantitative analyses utilizing Brn3a immunostaining were performed to evaluate the number of 

RGCs overtime following TAI. This approach revealed a subtle time dependent decrease of 

RGCs in the injured animals from 7 days to 28 days post injury (Figure 4.4 C). Of note, however, 

was the finding of a comparable time dependent decrease of RGCs in the sham animal at 7 days 

to 28 days post sham injury, which was obviously not related to traumatic axonal injury. 

Compared to sham injured animals, there was no significant decrease in the number of RGCs at 

each time point post injury. At 7 days post injury, 2620.6±102.3 (mean ±standard deviation) 

RGCs survived compared to 2610.7±103.5 in the sham group. At 14 days post injury, 

2358.8±148.1 RGCs survived compared to 2509.5±65.8 in the sham group. Further at 28 days 

post injury, 2378.8±93.2 RGCs survived compared to 2465.5±65.8 in the sham group. Despite 

the subtle loss of RGCs overtime, majority of RGCs survived at each time point post injury, 

consistent with the TUNEL and caspase-3 immunostaining which did not support dramatic RGC 

death following diffuse traumatic axonal injury of the optic nerve. 
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Persistent expression of phospho-c-Jun overtime following TAI in the optic nerve  
 

As noted above, as no overt RGC loss could be identified post injury, we also employed 

antibodies to phospho-c-Jun, which has been linked to neocortical neuronal survival and axonal 

regeneration following diffuse traumatic axonal injury (Greer et al., 2011). In the current study, 

the expression of phospho-c-Jun was found specifically within the RGCs, based upon its 

colocalization with Brn3a (Figure 4.5). In this domain, the phospho-c-Jun positive RGCs were 

interspersed by other RGCs lacking phospho-c-Jun expression. Further, the expression of 

phospho-c-Jun by RGCs persisted from 2 days to 90 days post-TBI (Figure 4.6). Collaboratively, 

this persistent expression of phospho-c-Jun is consistent with RGC survival overtime.  

 

Qualitative ultrastructural analysis of RGC following TAI in the optic nerve  
 

Parallel ultrastructural analysis of cells within the RGC layer undertaken from 7 days to 

28 days post injury also confirmed the absence of overt cell death. Throughout the period of 7 

days, 14 days and 28 days no apoptotic or necrotic RGC profiles were seen (Figure 4.7). 

Additionally, no evidence of chromatin clumping, nuclear eccentricity or increased neuronal 

electron density was found, again consistent with neuronal preservation. Although occasional 

mitochondrial dilation was observed, this dilation did not progress over time, suggesting that this 

was a fixation artifact. Of note, the cell body appeared smaller at 28 days post injury, suggesting 

atrophic change overtime (Figure 4.7). 

 

DISCUSSION  

In the current communication, both qualitative (TUNEL and caspase-3 immunostaining) 

and quantitative (Brn3a immunostaining) studies demonstrated no evidence of significant RGCs 
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death following diffuse traumatic axonal injury in the optic nerve. The parallel finding from 2 

days to 90 days post injury of phospho-c-Jun expression, an established marker of neuronal 

survival and potential axonal repair, further argued for RGC survival rather than death. Lastly, 

our parallel ultrastructural analysis did not reveal RGC death, again consistent with RGC 

survival.  

As presented the findings of the current study, stand in contrast to numerous studies 

reporting that virtually any damage to optic nerve results in dramatic RGC loss (Berkelaar et al., 

1994; Dibas et al., 2010; Kielczewski et al., 2005; Sulaiman et al., 2011; Peinado-Ramon et al., 

1996; Saatman et al., 2003). The reason for this different response to TAI in comparison to other 

models of optic nerve injury is not entirely clear, however, it most likely resides in the diffuse 

nature of the injury, together with major differences in the pathogenesis of axonal injury 

following diffuse traumatic injury vs. crush/transection.  

As noted, the survival of RGCs following diffuse axonal injury in the optic nerve varies 

from the dramatic RGC loss routinely described following the optic nerve transection and crush 

injury. The major difference between these model systems is that optic nerve transection and 

crush constitute a primary axonal injury, while TAI involves secondary/delayed processes 

leading to disconnection over a period of several hours (Büki and Povlishock, 2006). Primary 

axonal injury (transection) directly disrupts the axolemma, immediately exposing the injured 

axonal cylinder to the extracellular environment, resulting in sodium and calcium influx and the 

activation of proteases which then could cause further axonal damage progressing to neuronal 

death (Emery et al., 1991; Leybaert and de Hemptinne, 1996; Lucas et  al., 1990; Rosenberg et 

al., 2001; Strautman et al., 1990). RGC death has also been observed following optic nerve 

transection or crush, due to the activation of the superoxide anion-initiated apoptotic signaling 

http://www.ncbi.nlm.nih.gov/pubmed?term=Leybaert%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9007541
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Hemptinne%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9007541
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20Hemptinne%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9007541
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pathway (Catrinescu et al., 2012), caspase-3 induced apoptotic signaling pathway (Agudo et al., 

2008), and TNF-α pathway (Lukas et al., 2009). Unlike optic nerve transection/crush injury, the 

central fluid percussion brain injury used in the current study induces acute transit acceleration-

deceleration and compression-decompression of the optic nerve, resulting in diffuse traumatic 

axonal injury. This injury induces subtle, progressive changes in the axonal cylinder, as reported 

in our previous publications in the optic nerve as well as other fiber systems (Buki and 

Povlishock, 2006; Wang et al., 2011). Conceivably, these more subtle and progressive axonal 

changes do not lead to the massive ionic disruption associated with transection thereby 

supporting RGC survival.  

Besides the differences between optic nerve TAI and transection/crush injury, the 

survival of RGCs following diffuse traumatic axonal injury of the optic nerve, also differs from 

the RGCs response to optic nerve stretch injury, which also typically evokes RGC death, 

involving necrotic and/or apoptotic pathways (Sulaiman et al., 2011; Saatman et al., 2003). The 

underling mechanisms for this RGC response most likely originates from the mechanical stretch 

injury itself, during which the globe and optic nerve are stretched by a sling placed behind the 

globe (Gennarelli et al., 1989; Maxwell et al., 1994; Maxwell and Graham 1997; Sulaiman et al., 

2011; Saatman et al., 2003; Serbest et al., 2007). In this model, the force of stretch is applied 

directly to the globe, and then transferred from the globe to the optic nerve. This approach most 

likely injures both RGCs and the axons within the optic nerve via the mechanical forces acting 

on the retina, its intrinsic vasculature and downstream fibers. In contrast, with the central fluid 

percussion injury used in this study, the fluid injury pulse impacts the dorsal cortex, causing its 

elastic deformation along a rostral caudal path to reach the brainstem (Dixon et al., 1987; Wang 

et al., 2011). This deformation compresses the optic nerve transiently, stretching it, inducing the 
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diffuse traumatic axonal injury approximately 1 mm proximal to the chiasm (Wang et al., 2011). 

Importantly, in this model, the globe itself is shielded from the injury pulse, most likely sparing 

the retina while generating DAI in a more remote segment of the optic nerve than that previously 

assessed by others. 

In this regard, the majority of optic nerve transection or crush lesions have been 

performed in the intraorbital segment of the optic nerve, which directly approximates the RGCs 

(Alarcón-Martínez et al., 2010; Dibas et al., 2010; Hu et al., 2012). Similarly with optic nerve 

stretch, the utilized sling triggers axonal damage in the proximal optic nerve segment, with the 

caveat that the proximity of the axonal injury to the RGC of origin may also be a confounding 

factor in the fate of the RGC cell body. Previous studies evaluating the survival of rubrospinal 

neurons following axonal transection at the brain stem vs. the C2 level (Liu et al., 2004; Liu et 

al., 2003), and the survival of the corticospinal motor neuron after the intracortical axonal 

transection at different depth below layer V cortex (Dale et al., 1995), have shown that more 

neuronal sparing occurs as the distance between the neuronal somata and the downstream lesion 

increases, with proportionally more neuronal death occurs when the primary axonal lesion occurs 

adjacent to the neuronal cell body of origin (Dale et al., 1995; Liu et al., 2004; Liu et al., 2003). 

These results are consistent with our observations in more RGCs surviving TAI in the remote 

intracranial segment of the optic nerve, compared to less RGCs surviving transection/crush or 

stretch of the more proximal segment of the optic nerve.  

While the above described differences in animal modeling as well as our failure to 

demonstrate evidence of cell loss/death support our conclusions, further direct confirmation of 

RGC survival can be found in our additional immunocytochemical studies utilizing phospho-c-

Jun. Previous studies have demonstrated that the activation of the c-Jun pathway is associated 
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with scattered RGC survival, axonal sprouting and regeneration in various models of optic nerve 

injury in fish and rodents (Fitzgerald et al., 2010; Fitzgerald et al., 2009; Herdegen et al., 1993; 

Hüll and Bähr, 1994; Lu et al., 2003; Robinson 1994 and 1995). Further our RGCs expression of 

phospho-c-Jun is consistent with its expression in the neocortical neurons sustaining TAI which 

also do not die (Greer et al., 2011). Importantly, ATF-3, another transcription factor associated 

with axonal regeneration, is activated in the neocortical neurons following TAI (Greer et al., 

2011). 

One unexpected finding in the current communication is the subtle decrease of RGC 

number in the sham and injured animals overtime as detected through the use of antibodies to 

Brn3a. Importantly, however no difference existed between the number of RGC in the sham and 

injured animals at each time point. Accordingly we cannot conclude that the subtle RGC loss in 

the injured group was due to traumatic axonal injury. Rather other factors were at work most 

likely. Recently, Comley and colleagues (2011) demonstrated that the YFP fluorescent protein 

expressed in the thy1-YFP mice was not biologically inactive. In fact, it upregulated multiple 

genes and proteins associated with various cell stress responses, such as apoptosis signaling, 

DNA damage and repair, inflammation as well as oxidative or metabolic stress (Comley et al., 

2011). The high neuronal expression of YFP in YFP-16 transgenic mouse also subtly increased 

the incidence of the neuronal morphological abnormality and altered the time-course of dying-

back pathology (Comley et al., 2011). Thus, these adverse effects of YFP fluorescent protein 

within the neuron could explain the subtle decrease of RGC currently described in both the sham 

and injured animal populations.  

While the current communication in the visual system significantly extends our 

understanding of TAI and its implication for concomitant retinal change, it also offers many 

http://www.ncbi.nlm.nih.gov.proxy.library.vcu.edu/pubmed?term=%22B%C3%A4hr%20M%22%5BAuthor%5D
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other potential applications and benefits. The preservation of the RGCs and their proximal 

axonal appendages in a relatively intact optic nerve offer an unprecedented opportunity for 

evaluating possible regeneration and repair. Further, the fact that the optic nerve itself is 

accessible to both blood-born and CSF applied therapeutic approaches, this model should prove 

invaluable in multiple drug screening approaches. Accordingly, in light of the current finding on 

the preservation of the RGCs in response to TAI, our model system takes on increased utility and 

importance. 
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Figure 4.1 No overt loss of YFP positive cells in the retinal ganglion cell (RGC) layer overtime 

post injury. These retinal whole mounts demonstrate comparable YFP distribution in the sham as 

well as the injured animals at all time points post TBI. The axons in the retina maintain intact, 

without any axonal swellings. Compared to the retina of the 2 day sham animal, the center and 

the middle region of the retina reveal no overt loss of YFP positive cells in the retinal ganglion 

cell (RGC) layer (the same layer of RGC axons) at 2, 7, 14 and 28 days post injury. Scale bar: 

100μm. 
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Figure 4.2 This figure reveals negative TUNEL staining of retinal ganglion cells from 2 days to 

90 days post TBI, in contrast to the positive control section treated by DNAase, which shows 

positive TUNEL staining within different layers of the retina. Scale bar: 50 µm. 
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Figure 4.3 This figure demonstrates the absence of the cleaved caspase-3 expression in the 

retinal ganglion cell layer from 2 days to 90 days post injury. This finding contrasts to the 

positive control retinal section from a P2 pup, which shows positive expression of the cleaved 

caspase-3 in different layers of the retina. Scale bar: 100 µm. 
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Figure 4.4 This figure shows quantitative analysis of the retinal ganglion cell (RGC) number 

following TAI. Figure A illustrates the images taken from side to side of the retinal section 

immunostained with antibodies to Brn3a. Figure B shows the placement of a grid (0.435mm x 

0.115mm = 0.05mm
2
) expanding along the image parallel to the alignment of the RGCs, and 

covering all the RGCs that were counted. Figure C shows the quantitative assessments that 

reveal a subtle time dependent decrease of RGCs in both sham and injured animals from 7 days 

to 14 days and 28 days post injury. Note that, however, at each specific time point, the number of 

RGC shows no difference between the sham and the injured groups. Scale bar: 500 µm in A; 

200μm in B. 
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Figure 4.5 Note that an expression of phospho-c-Jun is found specifically within the retinal 

ganglion cell (RGC) layer, and colocalize with Brn3a positive RGCs (arrows). Also note that the 

phospho-c-Jun positive RGCs (purple) are scattered among adjacent phospho-c-Jun negative 

RGCs. Scale bar: 50μm. 
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Figure 4.6 This figure reveals YFP positive retinal ganglion cell (RGC) layer with concomitant 

labeling with antibodies to phospho-c-Jun, a known regulator of neuronal repair and regeneration 

from 2 days to 90 days post injury. Note that, the phospho-c-Jun positive RGCs are scattered by 

other phospho-c-Jun negative RGCs. Also note that no phospho-c-Jun expression is seen in the 

RGCs from the sham animals. Scale bar: 50μm. 
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Figure 4.7 These electron micrographs illustrate retinal ganglion cell ultrastructure at 7 days, 14 

days and 28 days post injury. Note that at all time points the RGCs reveal normal ultrastructural 

detail, characteristic of the healthy neurons from the retinal ganglion cell. The only caveat here is 

that the RGCs visualized at 28 days post injury appear smaller, perhaps suggestive of atrophy. 

Scale bar, 2μm. 
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CHAPTER FIVE: APPENDIX I 

DISTAL TRAUMATIC AXONAL DEGENERATION AND THE PROXIMAL AXONAL 

REORGANIZATION WITHIN THE INJURED OPTIC NERVE ARE ASSOCIATED WITH THE 

DIFFERENTIAL ACTIVATION OF MICROGLIA/MACROPHAGES  

 

Introduction 

 

Traumatic axonal injury (TAI) is a major feature of human traumatic brain injury (TBI) 

(Povlishock and Katz 2005), and has been associated with much of its morbidity (Graham et al., 

2002). To date, significant insight has been gained into the initiating pathogenesis of TAI. 

However, the precise anterograde and retrograde sequelae of TAI have not been well 

characterized. Specifically once the axon disconnects, the continued changes in the proximal and 

the distal disconnected axonal segments, have not been comprehensively appreciated, nor have 

their causative mechanisms been fully probed.  

Previously, axonal dieback, a phenomenon whereby axons retract from the initial site of 

injury, has been reported in spinal cord injury (SCI). For example, axonal dieback was observed 

in the rat and mice corticospinal tracts (CST) after thoracic spinal cord transection (Seif et al., 

2007, Yoshimura et al., 2011). In addition to the initial mechanical separation, continued SCI 

axonal dieback has, in part, been linked to local macrophage activation (Busch et al., 2009; 

Busch et al., 2010; Horn et al., 2008), concomitant oligodendrocyte and microglia/macrophage 

death (Stirling et al., 2004) as well as myelin degeneration (McPhail et al., 2004). Of note, 
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distinct macrophage subsets, proinflammatory type (M1) and anti-inflammatory type (M2), have 

been described to be differentially activated following SCI (Kigerl et al., 2009). 

Activation of microglia/macrophages has also been observed in relation to trauma 

induced axotomy following traumatic brain injury. Specifically, using a mouse midline closed 

skull injury model, which induces axonal injury in the corpus callosum, the activation of 

different subpopulations of microglia has been described in both the acute and chronic phases of 

injury (1 day – 28 days post injury) (Venkatesan et al., 2010). In such injuries, some activated 

microglia engulf injured axonal segments, consistent with the role of myelin phagocytosis during 

CNS inflammation (Reichert and Rotshenker, 1999, Venkatesan et al., 2010, Walther et al., 

2000). At the same time, other activated microglia express nerve growth factors (Venkatesan et 

al., 2010), which can promote neuronal repair, axon sprouting and oligodendrocyte proliferation 

(Kromer, 1987, Althaus et al., 1992, Sofroniew et al., 2001, Frielingsdorf et al., 2007). Thus, 

although it is clear that microglia/macrophage activation is a consistent feature of CNS axonal 

damage and dieback, their precise role in terms of the events, occurring in either the proximal or 

distal disconnected axonal segments is not fully understood. 

Previously, we utilized a model of traumatic brain injury evoking TAI within the mouse 

optic nerve, demonstrating highly localized, post-TBI axonal swelling and disconnection, with 

proximal and distal axonal dieback accompanied by the regression and reorganization of the 

proximal axonal swelling segments, and degeneration and delayed clearance of the distal 

swelling axonal segments (Wang et al., 2011). Given that our model is well characterized and in 

that the sequence of axonal disconnection and dieback on both the anterograde and retrograde 

fronts has been fully described within a well localized region of the optic nerve, we employed 
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these unique features to better understand the potential spatial-temporal relationship that exists 

between the microglia/macrophages and these axonal dynamic processes. 

 

Material and Methods 

Adult Thy1-YFP-16 transgenic mice, which expressed YFP under the promoter Thy1 

within over 80% of the optic nerve fibers (Feng et al., 2000), were subjected to central fluid 

percussion injury as described in the General Methods Section (Chapter 2), and allowed to 

survive from 2 days to 28 days (at each time point, n = 3 in each injured group, n= 1 in the sham 

injured group). Animals (the same animal from Chapter 4) were perfused and the optic nerve was 

blocked and sectioned as described in Chapter 2 and Chapter 3 and processed for fluorescent 

immunohistochemistry. 

 

Fluorescent Immunohistochemistry.  

To study the relationship between the YFP-linked axonal dieback and the activation of 

microglia/macrophages, labeling of the optic nerve were performed utilizing an antibody 

targeting the microglia/macrophage population (Iba1). Specifically, YFP fluorescent optic nerve 

sections from 2 day to 28 day time point post injury were selected and rinsed 3 x 10 minutes in 

PBS, and pretreated with 10% NGS with 2% BSA  and 0.5% Triton X in PBS at room 

temperature for 2 hours. Endogenous mouse IgG was blocked by primary antibodies derived 

from a mouse host (Mouse on Mouse Kit, MOM
TM

; Vector Laboratories; Burlingame, CA). 

Then the sections were washed 3 x 10 minutes in 10% NGS with 2% BSA and 0.5% Triton X in 

PBS, and then incubated overnight at 4
o
C with the primary antibody rabbit anti-Iba1 (1:1000; 

Zymed, San Francisco, CA). Next, the sections were washed 6 x 10 minutes with 1% NGS with 
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1% BSA and 0.2% Triton X in PBS at room temperature, followed by incubation with the 

secondary antibody Alexa 568-conjugated goat anti-rabbit IgG (1:500, Molecular probes, 

Invitrogen). The sections were then washed 4 x 5 minutes in PBS and 2 x 5 minutes in 0.1 M 

sodium phosphate buffer, and cover-slipped with Vectashield Hardset Mounting Medium with 

DAPI (Vector Laboratories) for analysis with a Leica TCS-SP2 AOBS confocal microscope 

(Leica Microsystems). For the study of the spatial-temporal relationship between the injured 

axons and their related macrophage/microglia, three-dimensional reconstructions were obtained 

with the Volocity Software package (Perkin Elmer; Waltham, MA). 

 

Results 

 
Sham Injury-General Findings and Cellular Phenotype 

 

In the optic nerve of sham-injured animals, the YFP-positive axons maintained continuity 

without any evidence of axonal swellings through the length of the optic nerve. Along the length 

of the optic nerve, no activation of microglia/macrophages could be observed at any time post 

injury (Figure 5.1 A). Specifically, the microglia/macrophages demonstrated a resting 

morphology, with their processes paralleling normal, aligned optic nerve axons (Figure 5.1 B and 

5.1 C).   

 

Microglia/Macrophage Responses to Diffuse TAI within the Optic Nerve 

Initial activation of microglia/macrophage within 2 days post injury 

As early as 2 days post injury, in the optic nerve of injured animals, activated 

microglia/macrophages were found scattered among diffusely injured axons. At this time point, 

they were confined to the site of initial axonal separation and dieback (Figure 5.2 A). Of note, at 
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this post injury time frame, only limited evidence of direct microglia association with the 

disconnected, distal axonal segments was found (Figure 5.2 B). As previously described in 

Chapter 3, the proximal axonal segments, which were now truncated and apparently undergoing 

reorganization, were not associated with or attached to this microglia/macrophage population 

(Figure 5.2 C).  

 

 Activation of microglia/macrophage at 7 days post injury 

By 7 days post injury, microglia/macrophage activation demonstrated a dramatic increase 

and now numerous activated microglia/macrophages could be easily identified in the injured 

optic nerve (Figure 5.3). As noted previously, the distal disconnected, swollen axonal segments 

retained their rounded/spheroidal shape (Chapter 3), and again, these distal, degenerating axonal 

segments were interspersed among adjacent intact fibers. In relation to these distal disconnected 

and degenerating axonal segments, however, the related microglia/macrophages revealed 

dramatic activation, with their cell bodies demonstrating rounded up profiles, consistent with 

their activation. These activated microglia/macrophages established direct contact with the 

degenerating distal axonal segments, with their processes attaching to and engulfing the swollen, 

rounded distal axonal profiles (Figure 5.4). Of note, no evidence of microglia/macrophage 

clustering was observed in relation to these degenerating axonal segments.  

In contrast to this dramatic distal microglia/macrophage activation, the proximal axonal 

segments, which again revealed a truncated configuration (Figure 5.5) (as previously described 

in Chapter 3), retained an axonal profile distinct from the distal spheroid, degenerating axonal 

segments. These proximal segments revealed shrinkage and resorption, consistent with 

reorganization overtime. In relation to these proximal axonal segments, the 
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microglia/macrophages were significantly less active, with their processes paralleling but not 

engulfing these axonal profiles (Figure 5.5). 

 

Persistent activation of microglia/macrophages in the distal degenerating axonal segments at 

14 and 28 days post injury 

Up to 14 to 28 days post injury, activated microglia/macrophages persisted within the 

distal disconnected, degenerating axonal segments (Figure 5.6 A and B). Again, their cell bodies 

were rounded, with their processes engulfing the distal, swollen degenerating axonal segments 

(Figure 5.6 A and B), consistent with their role in clearing these degenerating axonal segments. 

The proximal axonal segments at 14 and 28 days post injury, manifested continued 

reorganization, with the microglia/macrophages again maintaining a resting state. Their cell 

bodies were compressed, and their processes paralleled the axonal profiles, without any evidence 

of the proximal axonal segment engulfment (Figure 5.6 C and D).    

 

Discussion 

In the current study following TAI in the optic nerve, activation of the 

microglia/macrophages was first observed at 2 days post injury, becoming dominant by 7 to 14 

days and persisting up to 28 days post TBI. The distal, disconnected axonal segments, after the 

acute dieback, transitioned into a pattern of Wallerian degeneration, with the distal damaged 

axons encompassed by the processes of activated microglia/macrophages. In contrast, the 

proximal axonal segments underwent reorganization and their related microglia/macrophages 

remained markedly less active, with their processes paralleling but not enveloping these axonal 

profiles. These varied responses in the distal and the proximal axonal segments, most likely 
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speak to the fact that different signaling pathways were involved in these two regions and 

therefore translated to differential microglia/macrophages responses. 

At the early hours to 2 days post injury, both the proximal axonal segment and the distal 

disconnected axonal segments underwent rapid dieback in both the rostral and caudal directions 

as previously described in Chapter 3. Specifically, the acute axonal dieback of the proximal 

axonal segment moved approximately 0.4-0.8mm within a 48 hours period following injury, 

while the distal axonal segment retracted rapidly toward the chiasm at a similar speed (Chapter 

3). Because of the rapidity of these events, local calcium dysregulation and calpain activation are 

most likely involved in both of these acute axonal dieback processes during this early period post 

injury. Others have demonstrated that a rapid increase of intra-axonal calcium is associated with 

the initial axonal dieback following either in vitro laser-induced axonal damage (Hellman et al., 

2010) or in vivo optic nerve crush (Knöferle et al., 2010). This increased intra-axonal calcium, 

activates calpain and overloads and damages mitochondria, which collectively promote axonal 

dieback. In spinal cord transection studies, calpain inhibitors effectively inhibited acute axonal 

dieback following cord transection in both the proximal and the distal directions 

(Kerschensteiner et al., 2005), confirming the function of calpain in this acute axonal dieback 

response. This is most likely related to calpain’s capacity in degrading microtubules, 

neurofilaments and spectrin (Banik et al., 1997; Billger et al., 1988; Johnson et al., 1991; 

McGinn et al., 2009; Roberts-Lewis et al., 1994; Siman et al., 1984). In addition to calcium-

activated, calpain-mediated cytoskeletal proteolysis, calcium overloading can also destroy 

mitochondria, resulting in ATP deficiency, compromising axonal transport, further facilitating 

axonal dieback. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kn%C3%B6ferle%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20231460
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After the rapid dieback, our proximal axonal segments manifested a rapid transition from 

swollen enlarged segments to a truncated morphology (Chapter 3), which persisted from 7 – 28 

days post injury (the current chapter). Consistent with this proximal axonal segment 

reorganization and its attempt to repair, was the related finding that the associated 

microglia/macrophages maintained a resting state from the 7 – 28 days post injury. The 

underlining mechanisms for such phenomenon may be due to the rapid resealing of the axonal 

membrane, the conversion of anterograde transport to retrograde axonal transport and the 

continuity of these proximal axonal segments with viable RGCs (Chapter 4). The proximal 

axonal reorganization/repair maybe preceded by a rapid resealing of the axolemmal membrane 

(Liu et al., 2011, Meiri et al., 1983). Studies utilizing cockroach giant axon transection have 

demonstrated that at the cut end of the nerve fiber, the axonal membrane reseals within 5 to 30 

minutes after the transection at 23
o
C to 27

o
C, and this resealing depends on the influx of calcium 

into the axoplasm and its subsequent activation of phospholipase A2 (Yawo and Kuno, 1983; 

Yawo and Kuno, 1985). Such axonal membrane resealing also involves the Ca
2+

 mediated 

calpain activity after the transection of the neurites of in vitro cultured rat septal neuron (Xie and 

Barrett, 1991) and after crayfish medial giant axon transection (Godell et al., 1997). 

Additionally, vesicle proteins, such as synaptotagmin, synaptobrevin and syntaxin, have also 

been demonstrated to play an important role in membrane resealing (Fishman and Bittner, 2003). 

Such axolemmal resealing could prevent the influx of extracellular molecules and inhibit the 

release of intra-axonal components into the extra-axonal environment. Besides the rapid 

resealing of the axolemmal membrane, anterograde axonal transport could be converted to 

retrograde axonal transport (Tuck and Cavalli, 2010, Bisby and Bulger, 1977) via local 

proteolysis (Sahenk and Lasek, 1988) and/or the modification of proteins on the transported 
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vesicles (Martz et al., 1989), facilitating the reorganization of the proximal axonal segment. 

Further, the proximal axonal segments, perhaps receive persistent support from viable RGC, 

attenuating/inhibiting degeneration and promoting axonal reorganization, without generating 

myelin debris. All these events most likely resulted in less dramatic alternation of the 

microenvironment, translating to the minimal stimulus to microglia/macrophage and their 

relatively resting status in the proximal axonal segments. 

In contrast, in the distal disconnected, degenerating axonal segments, the 

microglia/macrophage manifested an activated phenotype from 7 to 28 days post injury, with 

their processes attaching to and encompassing the distal disconnected, degenerating axonal 

segments. The persistent activation of microglia/macrophage in this region is most likely linked 

to the persistent production of myelin debris during axonal degeneration (Kelley et al., 2007, 

Brück et al., 1995). Such microglia/macrophage activation is also consistent with their role in the 

clearance of the degenerating axonal segments previously described following the brain and 

spinal cord injury (Busch et al., 2009; Busch et al., 2010; Horn et al., 2008; Venkatesan et al., 

2010).  In SCI studies, Horn (2008) reported a spatial-temporal correlation between macrophage 

infiltration and the retraction of the injured ascending dorsal column sensory axon from 7 to 28 

days after injury. Horn (2008) also demonstrated in an in vitro study direct adhesive contacts 

between activated macrophages and dystrophic axons, with extensive axonal retraction induced 

only when the macrophages were activated. Busch (2009) demonstrated the expression and 

secretion of MMP-9 by the activated macrophages, and the specific inhibition of MMP-9 block 

the macrophage-induced retraction of dystrophic axons. In addition to MMP-9, activated 

microglia/macrophages also secrete cytokines, such as interleukin-1 (IL-1), IL-6 and tumor 

necrosis factor-α (Gentleman et al., 2004; Kita et al., 2000; McClain et al., 1991). It has been 
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demonstrated that IL-6 can increase microglia/macrophage’s phagocytotic activity (Shafer et al., 

2002-2003). Such positive feedback may further facilitate their engulfment of the distal 

degenerating axonal segments and the clearance of myelin debris, and maybe associated with 

potential synaptic plasticity in the downstream target.   

Such close association of the distal axonal degeneration and dieback and 

microglia/macrophage activation imply that blocking the activation of macrophage/microglia is a 

potential therapeutic approach to attenuate distal axonal degeneration. For example, minocycline, 

an anti-inflammatory and neuroprotective medication, inhibits microglial activation and 

attenuates MMPs (Brundula et al., 2002; Yrjänheikki et al., 1998). When administered 

intraperitoneally, minocycline is effective in reducing the number of activated 

microglia/macrophages, while also inhibiting axonal dieback, reducing lesion size and enhancing 

functional performance at both 7 and 14 days after SCI (Stirling et al., 2004).   

The morphology of microglia/macrophage transforming from the activated state in the 

distal disconnected, degenerating axonal segments to the resting state in the proximal 

reorganized axonal segments, suggests that their status is most likely modified by the adjacent 

microenvironment. As discussed, it is possible that in the proximal axonal segments, the 

microenvironment was not dramatically altered. On the other hand, in the distal degenerating 

axonal segments, the microenvironment was obviously different due to the local generation of 

myelin debris and the secretion of cytokines. 

While it is likely that the activity of microglia/macrophage can be modified by the local 

microenvironment, it is unclear whether distinct subtypes of microglia/macrophage reside in the 

injured optic nerve. Previous studies in SCI, however, demonstrate that two distinct macrophage 

subsets, namely proinflammatory type (M1) and anti-inflammatory type (M2), are activated 
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differentially following SCI (Kigerl et al., 2009). The M1 macrophages are activated rapidly and 

persist up to 28 days post SCI, in contrast to the M2 macrophages which are activated transiently 

and recover to the preinjury levels by 14 days post injury (Kigerl et al., 2009).  Further, inducing 

macrophages to differentiate into the M2 phenotype by peroxisome proliferator activated 

receptor (PPAR) agonists, has been demonstrated to promote anatomical and functional repair 

after rodent SCI (McTigue et al., 2007; Odegaard et al., 2007; Vill Villanueva and Tontonoz, 

2010).  Although there is little evidence regarding the activation of M1 and M2 macrophage in 

optic nerve injury studies, this SCI study suggests that the induction of a microglia/macrophage 

transition into the resting phenotype, may be a potential therapeutic strategy to attenuate the 

distal, disconnected axonal degeneration in our current study. 

All the above findings of the differential activity of microglia/macrophages in the 

disconnected proximal and distal axonal segments in the current communication were obtained 

based upon the morphological change of microglia/macrophages via the utilization of antibodies 

targeting Iba1 which label all microglia/macrophages. These results may further be confirmed 

via the utilization of other markers that specifically stain activated microglia/macrophages, 

affirming their activation at the disconnected distal axonal segments.   

In summary, this study reveals differential microglia/macrophage response to the 

disconnected proximal and distal axonal segments. These observations within the optic nerve 

provide unique insight into the pathobiology associated with the TAI, particularly in terms of 

activated microglia/macrophages in the distal disconnected axonal segments versus the resting 

microglia/macrophages found in the proximal, reorganizing axonal segments.  
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Figure 5.1 The microglia/macrophages maintain at a resting state throughout the length of the 

optic nerve 2 days after sham injury (A). Note that all the scattered microglia/macrophages 

reveal morphological features consistent with a resting state, with their processes paralleling the 

normal YFP expressing axons (B and C). (Blue: DAPI; YFP: axon; Red: microglia/macrophage). 

Scale bar: 300µm in A. 
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Figure 5.2 Activated microglia/macrophages can be recognized in the optic nerve at 2 days post 

TBI (A). Specifically, the activated microglia/macrophage can be seen scattered between injured 

axons at the site of initial axonal injury (A arrow). Note that a few activated 

microglia/macrophage lie adjacent to distal axonal segments in the process of dieback toward the 

chiasm (B arrowhead), however, in the proximal axonal segments, no association exists between 

microglia/macrophage and the reorganizing proximal axonal segments (C). Scale bar: 300µm in 

A, 20µm in B and C. 
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Figure 5.3 Activated microglia/macrophages predominate in the optic nerve at 7 days post TBI. 

Specifically, note that the activated microglia/macrophages attach/engulf the distal, disconnected 

degenerating axonal segments (arrow).  (Red, Iba1 immunostaining, microglia/macrophage). 

Scale bar: 300µm. 
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Figure 5.4 At higher magnification, the activated microglia/macrophages can be seen to 

approach and engulf the distal, disconnected swollen axonal segments within the optic nerve at 7 

days post injury. The top image shows that at 7 days post injury, there are numerous persistent, 

disconnected distal swollen axonal segments (white arrows). The activated 

microglia/macrophages (red) appear reactive, and their related appendages contact and engulf the 

swollen axonal segments. The lower two images show at even higher magnification that the 

distal swollen axonal segments (YFP) are enveloped by the processes of activated 

microglia/macrophages. Scale bar: 20µm.  
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Figure 5.5  The microglia/macrophages appear less active in the proximal axonal segments of 

the optic nerve at 7 days post injury. The top image reveals at 7 days post injury, that the 

proximal axonal segments are truncated (white arrows), consistent with reorganization. 

Microglia/macrophages are scattered between these proximal axonal segments. The lower two 

images showed at a higher magnification, that in the proximal axonal segments, a 

microglia/macrophage (red) maintain a resting state with its processes paralleling the alignment 

of the axonal fibers. Scale bar: 20µm. 
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Figure 5.6 Activated microglia/macrophages predominate in the distal disconnected axonal 

segments of the optic nerve at 14 and 28 days post TBI. Specifically, activated 

microglia/macrophages (Red, Iba1 immunostaining) can be seen attaching to and engulfing the 

distal disconnected, degenerating axonal segments (A and B). In contrast, in the proximal axonal 

segments, the microglia/macrophage again retains a resting state, compressed between the axonal 

fibers, with their processes paralleling the aligned axonal profile (C and D).  
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CHAPTER SIX: APPENDIX II 

 

THE CLEARANCE OF OPTIC NERVE EDEMA AND THE RECOVERY OF YFP 

FLUORESCENT AXONAL FIBERS OVERTIME POSTINJURY 

 

 

Introduction 

 

We have previously shown that our model of traumatic brain injury (TBI) evoked diffuse 

traumatic axonal injury (TAI) within the mouse optic nerve, with the TAI eliciting progressive 

axonal swelling and disconnection, together with proximal and distal axonal dieback (Chapter 3 

and Wang et al., 2011). These processes were accompanied with an apparent focal loss of YFP 

fluorescence in the region between the detached proximal and distal axonal segments. This loss 

of YFP fluorescence was not the result of actual fiber dissolution. Rather it was due to local 

fluorescence quenching, a sequelae of local blood-brain barrier (BBB) disruption. The barrier 

disruption was demonstrated by the passage of immunoglobulin (IgG) into the optic nerve 

(Figure 3.10), which was most likely accompanied by the movement of water, with the formation 

of edema, consistent with previous electron microscopic (EM) observation of the expansion of 

the interstitium (Figure 3.3).  

To date it has been demonstrated that water and solvent properties of water can lead to 

fluorescence quenching (Ebbesen and Ghiron, 1989; Oshima et al., 2006; Sadkowski and 

Fleming, 1980; Seliskar and Brand, 1971; Tobita et al., 2001). Since optic nerve edema involves 

significant generation of water, it is not unreasonable to hypothesize that this water can 
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participate in fluorescence quenching. The correctness of this hypothesis is further supported by 

previous observation of axonal profiles using antibodies to the endogenous YFP (Figure 3.11), 

confirming that the loss of fluorescence was most likely due to quenching, and not actual fiber 

loss. 

In the current chapter, we employed the same YFP transgenic mice TBI model and 

evaluated optic nerve axons at the electron microscopic level overtime post injury to better 

appreciate the persistence of intact/unaltered axons and reconfirm the characteristics of diffuse 

axonal injury of this model. In these studies, the intact axons were not separated by an expanded 

interstitial space in later phases of injury, suggesting the clearance of edema overtime postinjury. 

Further, in concert with this observation, we observed at the confocal fluorescent microscopic 

level, the recovery of YFP fluorescent intact axons in the previously identified regions of 

fluorescence loss, confirming the correctness of our hypothesis that water participates in 

fluorescence quenching, as the clearance of edema apparently reversed fluorescence quenching. 

 

Material and Methods 

 Adult Thy1-YFP-16 transgenic mice, which expressed YFP within the optic nerve fibers 

(Feng et al., 2000), were subjected to central fluid percussion injury as described in the General 

Methods Section (Chapter 2), and allowed to survive from 2 days to 90 days (at each time point, 

n = 3 in the injured group, n = 1 in the sham injured group). Animals (the same animal from 

Chapter 4/5) were perfused and the optic nerve was blocked and sectioned as described in 

Chapter 2 and Chapter 3. The optic nerves were processed for electron microscopic analysis and 

fluorescent confocal microscopic analysis. 
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Electron Microscopy  

For electron microscopic (EM) analysis, the YFP-16 transgenic mice were first perfused 

with 100ml heparinized normal saline, followed by 200ml 2% paraformaldehyde and 2.5% 

glutaraldehyde in Millonig’s buffer. Again, the brain and the optic nerves were post-fixed and 

blocked as described in Chapter 2. These prepared YFP optic nerves were osmicated in 1% 

OsO4, dehydrated, embedded in epoxy resins (Embed-812; Electron Microscopy Sciences, 

Hatfield, PA), mounted on plastic slides (Thomas Scientific Co., Swedesboro, NJ) and cover-

slipped. After resin curing, the injured axonal segments including the locus of fluorescence 

quenching, were excised, mounted on plastic studs, and thick sectioned to the depth of the sites 

of interest using an ultramicrotome (Leica Ultracut R; Leica, Wien, Austria). Serial 40 nm 

sections were cut and mounted onto Formvar-coated single-slotted grids. The grids were then 

stained with 5% uranyl acetate in 50% methanol for 2 minutes and 0.5% lead citrate for 1 

minutes, and visualized using a JEM 1230 electron microscope (JEOL Ltd., Tokyo, Japan). 

 

Fluorescent Confocal Microscopy  

The optic nerve sections from YFP-16 transgenic mice sustaining central fluid percussion 

injury or sham injury, were prepared as described previously (See Chapter 2 Animal perfusion 

and Optic nerve preparation). The cryo-dissected 10µm optic nerve sections were directly 

mounted on glass slides with ProLong-Gold antifade reagent (Invitrogen, Carlsbad, CA), and 

cover-slipped for image capture with a Leica TCS-SP2 AOBS confocal microscope (Leica 

Microsystems), at 2 days, 7 days, 14 days, 28 days and 3 months post injury. The evaluation of 

YFP fluorescent axonal fibers was specifically located at the locus of previous fluorescent loss, 

the same locus of initial TAI (approximately 1mm proximal to the chiasm). 
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Results 

 
Electron microscopic observation of the optic nerve axon at the locus of fluorescence 

quenching 

As early as 5 minutes to 1 hour post injury, the optic nerve revealed initial axonal 

swellings (see Chapter 3 Figure 3.3). This axonal injury was accompanied by the expansion of 

the interstitial space (see Chapter 3 Figure 3.3 asterisk), consistent with the presence of edema 

generated by the disruption of the blood-brain barrier (BBB) discussed before.  

At 7 days (Figure 6.1) and 28 days (Figure 6.2) post injury, in the same locus of 

fluorescence quenching, numerous intact axonal fibers were observed via EM analysis. 

Specifically, at these time frames post injury, this region revealed numerous continuous 

linear/non-swollen axonal profiles spanning the field, which revealed only occasional Wallerian 

debris interspersed among the morphologically intact axons. Within the axonal cylinder of the 

intact axons, microtubules and neurofilaments paralleled the longitudinal orientation of the axon, 

with no evidence of microtubule misalignment or neurofilament compaction. Within these axons 

no accumulations of either mitochondria, smooth endoplasmic reticulum or vesicles were found. 

The intact mitochondria revealed normal morphology, with no findings of dilation or 

disorganized cristae. This ultrastructural analysis confirmed the maintenance of axonal integrity 

within the locus of fluorescence quenching, consistent with the characteristics of diffuse 

traumatic axonal injury.  

Of note, at 7 days and 28 days post injury timeframe, these same loci of YFP 

fluorescence quenching, revealed no evidence of the expansion of the interstitial space (Figure 

6.1 and Figure 6.2). This observation varied from previously described time frames in which the 
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expansion of the interstitial space within the optic nerve was routinely observed (See Chapter 3 

Figure 3.3). Such reduction of the interstitial space at these more chronic phases post injury (7 

days and 28 days) is consistent with the resolution of edema overtime.   

 

Confocal microscopic observation of YFP fluorescent axons in the region of fluorescence 

quenching  

Concomitant with our ultrastractural observation of intact axonal fibers and the clearance 

of edema overtime in the region of fluorescence quenching, was the finding of a recovery of YFP 

fluorescent axonal fibers within this same region.  

At 2 days post injury, the optic nerve of the injured mice exhibited predominent axonal 

swellings and disconnection. The proximal axonal swellings were truncated and shifted toward 

the globe. The distal axonal swellings were rounded and redistributed toward the chiasm. These 

reactive axonal changes and dieback were accompanied by an apparent focal loss of fluorescence 

(Figure 6.3).   

By 7 days post injury however, the optic nerve of the injured mice demonstrated an initial 

recovery of the YFP fluorescent fibers at the locus of original fluorescence quenching. 

Specifically, routine confocal analysis revealed more intact/unaltered YFP fluorescent axonal 

profiles, as well as detached and fragmented axonal profiles in the same locus of fluorescence 

loss described in the earlier time frame (Figure 6.3). Again, the proximal axonal swellings were 

truncated, consistent with their reorganization. 

From 14 days and 28 days post injury, within the locus of original YFP fluorescence 

quenching, the restoration of YFP fluorescent axonal fibers continued (Figure 6.3), with more 
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YFP fluorescent fibers together with occasional scattered fragmented axonals profiles were 

revealed.    

By 3 month post injury, this recovery of YFP fluorescent axons showed further 

improvement at the locus of original fluorescence quenching, which was now crossed by 

numerous linear/continuous unaltered YFP fluorescent axonal profiles, without evidence of 

swollen axonal segments or fragmented axons (Figure 6.3).  

 

Discussion 

In this current study, we provide at more chronic time points the ultrastructural evidence 

of numerous intact axonal fibers in the region of previously described YFP fluorescence 

quenching. This occurred together with the reduction of the interstitial space overtime post injury, 

consistent with the clearance of edema. This resolution of edema was also accompanied by the 

recovery of YFP fluorescent axonal fibers overtime post injury.  

The existence of numerous intact axonal fibers at the locus of original YFP fluorescence 

loss confirmed that not all the axons within the optic nerve were injured by the initial traumatic 

injury. Rather, apparently only a sub-population of axons within the optic nerve was 

traumatically perturbed, an observation entirely consistent with the characteristics of diffuse 

traumatic axonal injury wherein injured axons are interspersed by other adjacent intact fibers 

(Buki and Povlishock, 2006; Greer et al., 2011).   

Current observation of an initial expansion of the interstitial space followed by its closure 

over time is consistent with a transient opening of the blood-brain-barrier (BBB) following TAI. 

This observation is similar to previous research performed in a rat weight drop injury model in 

which edema occurred becoming maximal by 5 hours post injury, thereafter resolving (Vink et 
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al., 2003). Using the same rat weight drop model, Barzó (1997) observed that the water diffusion 

distance, increased up to 45 minutes postinjury and thereafter decreased. Since water diffusion 

distance is predominantly associated with the formation of vasogenic edema, which results from 

the compromise of BBB, this transient increase of water diffusion distance/vasogenic edema 

coincides with the BBB opening immediately upon brain trauma followed by a relatively rapid 

BBB closure at later time points (Barzó et al., 1996).  

The currently described clearance of edema within the injured optic nerve, was 

accompanied by a recovery of YFP fluorescent axons in the same region of our previously 

reported fluorescence quenching. Previous studies have demonstrated the relationship between 

water and fluorescence quenching, through the hydrogen-bond interactions (Oshima et al., 2006), 

the transition to a close-lying energy level (Tobita et al., 2001) and other mechanisms. 

Accordingly, it is not unreasonable to assume that the reversal of fluorescence quenching could 

be achieved through the reduction of water, herein the clearance of edema. Besides the resolution 

of tissue water, other studies have also been demonstrated to recover fluorescence, such as the 

removal of the quenching reagent (Chen et al., 1999), the addition of anions (SO3
2-

 and PO4
3-

, 

Xia et al., 2012) and the oxidation of ions (Kress et a., 2002). Whether these events are involved 

in our recovery of YFP fluorescent fibers over time, requires further investigation. 

In summary, this study demonstrated the maintenance of intact axonal fibers in the region 

of YFP fluorescence quenching, consistent with the characteristic of TAI. The clearance of 

edema was accompanied by the recovery of YFP fluorescent axons overtime post injury, 

confirming the correctness of previous hypothesis that water result in fluorescence quenching. 
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Figure 6.1  At 7 days post injury, the previous locus of fluorescent loss within the injured optic 

nerve, reveals numerous intact axonal fibers. The neurofilaments and microtubules parallel the 

long axis of axons. The mitochondria within the axons maintain normal morphology. Some 

Wallerian debris can be seen scattered between intact axons, a finding consistent with TAI. Also 

note that the interstitial space appears unremarkable at this time frame. Scale bar: 2µm. 
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Figure 6.2  At 28 days post TBI, the original locus of fluorescence quenching within the optic 

nerve again reveals numerous intact axonal fibers, without any swollen axonal segments. The 

microtubules parallel the alignment of the axon, and the mitochondria maintain normal 

morphology showing no dilation or disorganization of the mitochondrial cristae. Occasional 

electron dense Wallerian debris are found interspersed between these intact axonal fibers, 

consistent with TAI. Again, no expansion of the interstitial space is seen at this time point post 

injury. Scale bar: 2µm. 
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Figure 6.3  The recovery of the YFP fluorescent optic nerve fibers in the region of fluorescence 

quenching overtime post injury. The optic nerve of the sham-injured mice reveals a robust 

distribution of  linear/continued YFP fluoresent axons, with no evidence of axonal swelling or 

YFP fluorescent loss.  At 2 days post injury, the locus of initial traumatic axonal injury (TAI) 

within the optic nerve reveals disconnected axonal swellings and fragmented axonal profiles. 

Note that the dramatic YFP fluorescent loss at this 2 days post injury time frame. By 7 days post 

injury, initial recovery of YFP fluorescent axonal profiles can be seen at the same locus of YFP 

fluorescent loss, with fragmented axonal profiles scattered among the intact axons. At 14 days 

and 28 days post injury, the recovery of YFP fluorescent axonal fibers continues. By 3 months 

post injury, more linear/continued YFP fluorescent axons are revealed at the same locus of YFP 

fluorescence  quenching, although recovery is not complete due to TAI and its attendent diffuse 

axonal damage. Scale bar: 20µm. 
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CHAPTER SEVEN  

GENERAL DISCUSSION 

 
 

Distinct from the discussion in each individual chapter, I integrate here the results of this 

thesis and discuss fully those issues relevant to the reported axonal damage in visual system, 

considering the pathological changes occurring both in the anterograde and retrograde directions, 

as well as their implications for therapeutic intervention and axonal repair. 

 

Synopsis of the Current Work and its Implications 

The current thesis presents the first characterization of a mouse model of diffuse 

traumatic axonal injury in the optic nerve following mild traumatic brain injury. By subjecting 

transgenic mice expressing endogenous YFP fluorescent protein in the optic nerve to central 

fluid percussion injury (cFPI), we consistently generated diffuse TAI in the optic nerve, 

demonstrating overtime progressive axonal swelling and disconnection. This ultimately led to 

proximal and distal axonal dieback, with regression and reorganization of the proximal 

swellings, and the persisting degeneration and dieback in the distal axonal segments. In concert 

with these development and characterization studies, we also demonstrated the limitations of 

traditional APP immunohistochemical staining to routinely detect axonal injury. Specifically, we 

convincingly demonstrated that antibodies targeting C-terminus of APP detect only the proximal 

swollen axonal segment, without distal mapping.  Equally important, this same APP 
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immunostaining diminished dramatically within 3 days post injury in the proximal region 

(Chapter 3), further suggesting the more limited utility of this marker. 

Of additional importance in this study was its finding that this diffuse TAI in the optic 

nerve following cFPI, did not induce significant death of retinal ganglion cells (RGC), as 

demonstrated by qualitative (TUNEL and caspase 3 immunostaining), quantitative (Brn3a 

immunostaining) and ultrastructural analysis. Of parallel importance was the finding that this 

RGC survival was accompanied by their persistent expression of phospho-c-Jun from 2 to 90 

days post injury, which has been linked to neuronal survival and potential axonal repair in other 

injury paradigms (Chapter 4). Lastly, in light of the fact that the observed axonal dieback was not 

related to RGC death, other mechanisms must be evoked to explain this phenomenon. 

In the early hours post injury, the acute axonal dieback observed in both the proximal and 

distal segments, is most likely linked to local calcium dysregulation and activation of 

proteinases. In the more chronic phases post injury, specifically 7 to 28 days post injury, the 

observation within the distal disconnected, degenerating axonal segments, that activated 

microglia/macrophages closely envelop/encompass these segments, suggests their potential role 

in delayed axonal degeneration and dieback. In contrast, the microglia/macrophage appeared less 

reactive in the proximal axonal segments, with their processes paralleling these axonal profiles 

undergoing reorganization/repair (Chapter 5 Appendix I). 

In concert, with all the above this optic nerve injury was also associated with blood-brain 

barrier disruption and local edema formation that resolved overtime (Chapter 6 Appendix II). 

Although this barrier disruption did not appear to influence the pathogenesis in the optic nerve, 

the edema interfered with the observation of intact YFP expressing axons in the site of initial 

TAI (Chapter 3).  
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In the following passages we expand the above, providing a more thorough evaluation of 

our findings and their overall implications for the field of TBI research and its associated axonal 

injury, while also setting the stage for future investigations in this area. Specifically, for the 

purpose of this component of the thesis we organize this chapter around our central findings 

which include model characterization, its utility for studying TAI, the occurrence of anterograde 

and retrograde responses to injury, its association with blood-brain-barrier disruption as well as 

future directions focusing on therapeutic intervention, neuroplasticity and axonal regeneration.  

 

Characterization of a Mouse Model of TAI within the Visual System 

This optic nerve TAI model induced by TBI using YFP expressing mice provided 

unprecedented insight into the pathogenesis of TAI. The observed optic nerve TAI was generated 

from a common TBI model modified from rat (Dixon et al., 1987) to mice (Greer et al., 2011, 

Wang et al., 2011). In this model, optic nerve TAI occurred immediately following mild TBI, 

and was accompanied by concomitant scattered axonal damage in the neocortex, the dorsolateral 

thalamus and subcortical white matter, all of which were consistent with mild TBI (Greer et al., 

2011; Greer et al., 2012). The site of the initiation of TAI in the optic nerve always  

approximated the optic nerve segment 1mm proximal to the chiasm, which made the critical 

assessment of this phenomenon all the more feasible. While unknown, the localization of the 

TAI to this region of the visual axis is most likely linked to brain deformation and compression 

of the optic nerve, occurring when the dorsal cortex was impacted by the fluid injury pulse.  

Importantly, the described optic nerve TAI following cFPI replicates the optic nerve 

damage described in shaken baby syndrome, wherein the optic nerve from infants sustaining 

fatal whiplash shaking, reveals strong beta amyloid precursor protein (beta-APP) 
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immunoreactivity in swollen axonal segments within the optic nerve (Gleckman et al., 2000). 

Our optic nerve diffuse axonal swollen segments, specifically the proximal axonal segments,   

were also APP immunoreactive. Of note, the antibodies utilized in our research targeted the C-

terminus of APP protein and only detected the proximal swollen axonal segments which lost 

immunoreactivity over 3 days post injury (Chapter 3). This accumulation of beta-APP, which 

undergoes anterograde axonal transport, is consistent with a trauma-induced impaired axonal 

transport. Ultrastructurally, these injured axonal segments revealed swollen mitochondria, 

misaligned neurofilaments and microtubules, as well as the accumulation of SER, mitochondria 

and vesicles (Chapter 3), all of which are consistent with focal axonal cytoskeletal damage/ 

disorganization with the compromise of axonal transport.  

The reactive axonal changes seen within the optic nerve following cFPI, are also similar 

to those seen with optic nerve stretch. Previous to the development of the current optic nerve 

TAI model, optic nerve stretch has been utilized to study traumatic axonal injury, and has 

provided important insight into the pathogenesis of TAI (Gennarelli et al., 1989; Maxwell et al., 

1990; Maxwell and Graham, 1997; Saatman et al., 2003; Serbest et al., 2007; Sulaiman et al., 

2010). Gennarelli and colleagues (1989) created an optic nerve stretch injury model using albino 

guinea pigs via a rapid controlled elongation (tensile strain) of the optic nerve. This was achieved 

by placing a sling over the posterior pole of the globe.  After the stretch injury, Gennarelli et al 

(1989) demonstrated that the anterograde axonal transport of horseradish peroxidase (HRP) was 

impaired from the RGC to the chiasm and superior colliculi. In these studies, the optic nerve 

demonstrated axonal swellings with the accumulation of organelles, sitting adjacent to axons 

revealing normal morphology. Importantly, however, this stretch injury model did not replicate 

the characteristics of either human or subhuman primate diffuse axonal injury because this model 
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failed to generate concomitant change within the brain parenchyma. Specifically, unlike fluid 

percussion injury, optic nerve stretch was not accompanied by TAI in either the brain or brain 

stem, which are typically involved in human and animal TBI. Utilizing guinea pig optic nerve 

stretch injury, Maxwell (2003) noted that traumatic axonal injury occurred approximately half 

way along the length of the nerve, with the site of axonal injury associated with axonal 

mitochondrial abnormalities and neurofilament compaction. Other injured axons demonstrated 

the loss of neurofilaments and microtubules (Maxwell et al., 2003). Saatman (2003) stretched the 

mouse optic nerve, and demonstrated a two phase calpain activation associated with TAI, with an 

early phase of calpain activation occurring within minutes to hours after injury, associated with 

intra-axonal structural damage. A later phase of calpain activation observed at 4 days post injury, 

was linked to axonal degeneration. In addition to calpain-mediated spectrin proteolysis, Serbest 

(2007) also observed the loss of neurofilaments and microtubules in optic nerve axons after 

stretch injury. 

However, despite similarities between our model and those described above, important 

differences exist between these model systems. As discussed in Chapter 3, dissimilar to optic 

nerve stretch which induces TAI within the optic nerve alone, our cFPI model also evoked TAI 

throughout the related brain parenchyma, involving the neocortex, the dorsolateral thalamus and 

subcortical white matter, findings consistent with other reports from our laboratory (Kelley et al., 

2006 and 2007, Buki and Povlishock, 2006, Greer et al, 2011). This characteristic 

diffuse/scattered axonal injury within the optic nerve as well as the brain parenchyma arguably 

makes our model more similar to human TBI, with the caveat that our model may offer the 

potential for preclinical drug screening to target TAI within the visual system and cerebrum 

given its more human-like pattern of axonal injury.  
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Utility of this mouse model of TAI within the optic nerve to probe TAI 

pathogenesis 

Besides the relevance of our model to the pathobiology of mild TBI, our current 

utilization of the YFP-16 transgenic mice, expressing endogenous YFP fluorescent protein 

within the majority of retinal ganglion cells and the optic nerve (Feng et al., 2000), allowed for 

the detailed and ready observation of the events starting from the initiation of axonal swelling to 

ultimate axonal disconnection, as well as any subsequent proximal and distal axonal dieback 

overtime (Chapter 3). Our use of the YFP-16 transgenic mice obviated the limitations associated 

with the use of APP immunohistochemistry which detected only the proximal, swollen axonal 

segments which typically lost immunoreactivity over 3 days post injury (Greer et al., 2011, 

Wang et al., 2011). The advantage associated with the expression of the YFP fluorescent protein 

by the Thy1 promoter, resided in its complete transport throughout the axons of the optic nerve. 

Accordingly, any morphological change associated with axonal injury was reflected in an 

altered/abnormal YFP fluorescent signal, directly visualized via fluorescent microscopy in both 

the proximal and the distal axonal segments.  

Distinct from our current YFP expressing approach, the above described optic nerve 

stretch models utilized guinea pigs or wild type mice (Gennarelli et al., 1989, Maxwell et al., 

2003, Saatman et al., 2003, Serbest et al., 2007). In these studies, the identification of axonal 

swellings relied completely upon immunohistochemical approaches and ultrastructural analysis 

which as noted previously, posed limitations (Gennarelli et al., 1989, Maxwell et al., 2003, 

Saatman et al., 2003, Serberst et al., 2007). Further, these methods did not allow for the precise 

identification of either the proximal or distal origins of any observed axonal swellings. 
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Specifically once the axon disconnected, it was virtually impossible to determine if the axonal 

swellings occurred in the proximal vs. distal disconnected segments. Consequently, this model 

did not allow for the clear delineation of the pathological changes occurring either anterogradely 

or retrogradely.  

 

Implications of the current TAI model for understanding the anterograde and 

retrograde sequelae of TAI  

Utilizing YFP expressing mice, our current optic nerve TAI model allowed the ready 

comparison of the pathological differences seen in the disconnected axonal segments in both the 

anterograde and the retrograde directions. 

1) Anterograde responses - distal axonal dieback/degeneration and microglia/macrophage 

activation 

As described in Chapter 3, once disconnected, the anterograde/downstream distal axonal 

segments, underwent acute dieback toward the chiasm overtime. Ultrastructually, the distal 

swollen axonal segments revealed increased electron density, an accumulation of vesicles and 

swollen degenerating mitochondria, as well as disorganized microtubules and neurofilaments, all 

of which were consistent with dieback and degeneration, as a prelude to Wallerian change.  

The acute dieback of the distal disconnected axonal segments in the first hours post 

injury, is most likely due to an initial increase in intra-axonal calcium and sodium. In vitro laser-

induced axonal damage studies demonstrate that calcium dysregulation plays an important role in 

the initial axonal dieback (Hellman et al., 2010). A rapid increase of intra-axonal calcium has 

also been observed in the acute axonal degeneration following optic nerve crush, with its 

inhibition by calcium channel inhibitors markedly attenuating axonal degeneration (Knöferle et 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kn%C3%B6ferle%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20231460
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al., 2010). Similar to the increase of intra-axonal calcium, a rise in the intra-axonal sodium may 

also play a role in the acute axonal dieback. A close relationship has been demonstrated between 

the increase of intra-axonal calcium and the rise in the intra-axonal sodium, which is further 

supported by the findings that the sodium channel inhibitor, tetrodotoxin, can also block the 

increase of calcium (LoPachin and Lehning, 1997). Again, such sodium channel blockers, 

dramatically ameliorate the number of acute axonal swellings following optic nerve crush 

(Beirowski et al., 2010). 

In addition to the role of calcium and sodium dysregulation in the acute axonal dieback, 

calpain mediated proteolytic damage to the axonal cytoskeleton may also promote and perhaps, 

accelerate the acute axonal dieback. Specifically, calpains have been demonstrated to participate 

in the degradation of axonal cytoskeleton spectrin, microtubules and neurofilaments (Buki and 

Povlishock, 2006; Buki et al., 1999; Saatman et al., 2003). Further, such calpain activity has been 

directly linked to the degeneration of the distal, disconnected downstream axonal segments, as 

demonstrated by the finding that calpain inhibition attenuates the degeneration of the distal, 

disconnected downstream optic nerve fibers after crush injury (Couto et al., 2004).  

In addition to the involvement of calcium and sodium dysregulation, as well as the 

activation of the calpain protease, other factors must also be taken into consideration in the 

process of the acute axonal dieback.  In the current study, we also frequently observed in the 

distal disconnected axonal segment, that the mitochondria remained swollen,   in response to the 

injury. This mitochondrial damage was most likely related to calcium overloading and 

subsequent mitochondrial perturbation. Given the fact that mitochondria are the major source of 

ATP production which is essential for axonal transport and the maintenance of the axolemma, 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kn%C3%B6ferle%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20231460
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the injured mitochondria may also be linked to an ATP deficit, causing a failure in axonal 

transport, thereby further promoting axonal dieback. 

Some equate this acute distal axonal dieback with the initial phases of Wallerian 

degeneration, however, in the strict sense, Wallerian degeneration is a more delayed event. In the 

acute axonal dieback period, the currently used optic nerve TAI model revealed only singular 

distal axonal swelling in continuity with axons projecting toward  the chiasm. This is distinctly 

different from the Wallerian degeneration, which is associated with multiple loci of axonal 

swelling and fragmentation along the axonal segment distal to optic nerve transection (Beirowski 

et al., 2010).  

Although the acute axonal dieback as described in the current study differs from 

Wallerian degeneration, at least in its acute phase response, it is most likely followed by 

Wallerian degeneration, which occurs as a delayed event. Mechanistically, transgenic mice with 

the slow Wallerian degeneration (Wld
S
) protein have provided insight into the basic molecular 

and cellular mechanisms of Wallerian degeneration (Coleman and Freeman, 2010). The Wld
S
 

protein (slow Wallerian degeneration) consists of a fragment of the ubiquitin assembly protein 

UFD2a/UBE4B and nicotinamide mononucleotide adenylyl-transferase-1 (Nmnat1), which is an 

enzyme promoting the synthesis of nicotinamide mononucleotide adenine dinucleotide (NAD) 

(Conforti et al., 2000; Mack et al., 2001; Wang and He, 2009). The speed of Wallerian 

degeneration is slowed in the Wld
S
 mouse to one tenth of the speed in the wild type animal 

(Perry et al., 1990, Glass et al., 1993). Using Wld
S
 mouse, Kerschensteiner (2005) found in both 

the proximal and distal disconnected axonal segments, that the acute axonal degeneration was 

delayed following spinal cord transection. Similarly, utilizing the transgenic Wld
S
 rodents, 

Beirowski (2010) observed in the distal axonal segments that the axonal swellings and 
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dystrophic axons were substantially reduced in number following optic nerve crush or 

transection. Recent studies demonstrate that Wld
S
 prevents axonal degeneration via several 

mechanisms, including increasing nuclear NAD biosynthesis (Araki et al., 2004), increasing the 

Wld
S
 mitochondrial Ca

2+
 buffering capacity and improving basal mitochondrial motility in axons 

(Avery et al., 2012). These findings indirectly suggest that the mechanisms of Wallerian 

degeneration are related to mitochondrial dysfunction. It has been demonstrated that the 

activation of the mitochondrial permeability transition pore (mPTP) within the Wld
s
 axon 

triggers its degeneration, while the depletion of the mPTP protein cyclophilin D effectively 

inhibits axonal degeneration (Barrientos et al., 2011). 

In addition to these described factors associated with the initial axonal dieback and 

delayed axonal degeneration, other factors are most likely involved in the continued pathological 

progression here reported in the distal axonal segments. At 2 days postinjury, an initial activation 

of microglia/macrophages occurred at the site of the initiation of axonal injury, suggesting their 

potential involvement in the subacute phase of axonal dieback. In the current study, from 7 days 

to 28 days post injury, the injured optic nerve revealed a close spatiotemporal relationship 

between the distal disconnected, degenerating axonal segments and activated 

microglia/macrophages (Chapter 5). During this time frame, the distal swollen axonal segments 

were routinely encompassed/engulfed by the processes of activated microglia/macrophages, 

consistent with a comparable phagocytic role of microglia/macrophages described following 

injury in the corpus callosum (Venkatesan et al., 2010) as well as the  spinal cord  (Busch et al., 

2009; Busch et al., 2010; Horn et al., 2008).  

A well-known stimulus for continued macrophage activation, is the onset of delayed 

Wallerian degeneration in the distal disconnected axonal segment (Brück et al., 1995; Kelley et 
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al., 2007). Here the breakdown products of Wallerian degeneration, such as the myelin debris, 

most likely contribute to the long term, persistent activation of microglia and macrophages. Such 

activated microglia/macrophages are known to release proinflammatory cytokines, including 

interleukin-1, interleukin-6 and tumor necrosis factor-α (Gentleman et al., 2004; McClain et al., 

1991; Kita et al., 2000), with cytokines, such as interleukin-6, further upregulating the 

phagocytic activity of microglia/macrophage (Shafer et al., 2002-2003). These activated 

microglia/macrophages can also release MMP9, which has been linked with axonal retraction 

(Busch et al., 2009). 

 

2) Retrograde responses - the reorganization / repair of the proximal axonal segments and 

the survival of retinal ganglion cells  

In contrast to the continued degeneration of the disconnected, distal axonal segment, as 

noted in our study, the retrograde/upstream proximal axonal segments underwent rapid dieback 

toward the retina, yet then transitioned to reorganization/repair overtime. As described, the 

proximal axonal segment transitioned from a spheroidal swollen segment into a truncated 

appendage (Chapter 3). These distinct morphological differences in the distal and the proximal 

axonal segments suggest the involvement of different pathological signaling pathways in the 

anterograde vs. retrograde directions.  

 

2.1) Acute dieback of the proximal axonal segment  

 

Like the dieback of the distal segment in the first hours post injury, the proximal axonal 

segment also underwent retraction toward the retina. This acute axonal dieback of the proximal 

axonal segment spanned approximately 0.4 - 0.8mm within a 48 hours period following injury 
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(Chapter 3). In its initial phases, this process most likely shares similar mechanisms to those 

described for the acute dieback of the distal axonal segment, including local calcium 

dysregulation and calpain activation. It has been shown that in the presence of calpain inhibitors, 

the acute axonal dieback of the proximal axonal segments is blocked following spinal cord 

transection (Kerschensteiner et al., 2005). In addition to the influx of calcium and calpain 

activation, other processes such as the formation of autophagosomes are also induced by the 

initial Ca
2+

 influx after axonal injury, and as such, may also contribute to the acute proximal 

axonal dieback (Knöferle et al., 2010). This premise is been supported by Koch (2010) who 

demonstrated that inhibition of the formation of autophagosomes by the autophagy inhibitor can 

attenuate acute axonal dieback. 

 

2.2) The proximal axonal segment reorganization/repair 

In contrast to the persistent distal rounded, degenerating axonal segments, the proximal 

axonal segments evaluated in our studies underwent a relatively rapid transition from an enlarged 

and swollen segment into a thinned and truncated appendage. Ultrastructurally, these proximal 

truncated appendages contained normal / unaltered mitochondria and other organelles and 

vesicles, none of which were consistent with degeneration. Rather, their appearance suggested 

reorganization / repair of the proximal segment (Chapter 3). Accordingly, such morphological 

differences in the proximal vs. the distal axonal segments suggest the activation of different 

pathological signaling pathways.  

A possible basis for this proximal vs. distal difference may be related to postinjury 

proximal axolemmal resealing and its ability to restore local ionic homeostasis. Some have 

suggested that rapid proximal axonal reorganization/repair is preceded by a rapid resealing of the 

http://www.ncbi.nlm.nih.gov/pubmed/20231460
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axolemma (Liu et al., 2011, Meiri et al., 1983). Studies utilizing guinea-pig spinal cord 

transection/compression demonstrate that axonal membrane resealing process is related to the 

influx of calcium through the voltage dependent calcium channels(VDCC) (Nehrt et al., 2007). 

Calcium triggered calpain activity has also been described in the process of axonal membrane 

resealing following neurite transection in cultured rat septal neurons (Xie and Barrett, 1991). 

Calcium can also facilitate axolemma resealing via the activation of vesicle proteins, such as 

synaptotagmin, synaptobrevin and syntaxin (Detrait et al., 2000; Fishman and Bittner, 2003). 

Squid and crayfish giant axon injury studies show that when axons are injected with an antibody 

to block synaptotagmin binding to Ca
2+

, the severed axons do not seal (Detrait et al., 2000). 

Similarly, when axons are injected with an antibody to syntaxin, the severed axon also fails to 

seal (Detrait et al., 2000). In contrast, when axons are injected with either denatured antibody to 

synaptotagmin or denatured antibody to syntaxin, the severed axons seal (Detrait et al., 2000), 

supporting the premise that axolemmal resealing may be mediated by Ca
2+

-induced fusion of 

vesicle proteins. On note, this rapid resealing of the axolemma also occurred in the disconnected 

distal axonal segments; however, it did not inhibit the degeneration process of these distal axonal 

segments. In contrast, this rapid axolemma resealing is required for the reorganization of the 

proximal axonal segment.  

Besides this rapid resealing of the axolemma, the conversion of anterograde to retrograde 

axonal transport may also participate in the proximal axonal reorganization and recovery (Tuck 

and Cavalli, 2010).  Early nerve crush studies demonstrate that upon injury, the anterograde 

intra-axonal organelle transport is converted to the retrograde direction (Bisby and Bulger, 

1977). Such conversion could in part, be related to local proteolysis at the site of injury (Sahenk 

and Lasek, 1988), or the modification of proteins on the transported vesicles (Martz et al., 1989). 
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Through these mechanisms, it is most likely that the conversion of anterograde to retrograde 

axonal transport attenuates vesicle and organelle accumulation at the injured axonal tip, 

transforming the proximal axonal segment from the enlarged and swollen segment into a more 

thinned and truncated morphology reminiscent of that described in the current communication.  

 

2.3) Resting microglia/macrophage in the proximal axonal segment 

Consistent with the proximal axonal segment’s attempt to reorganize/repair overtime, 

was our parallel finding that the microglia/macrophages found in relation to proximal axonal 

segments, retained at a resting state throughout our 7 - 28 days post injury observation, a 

response in contrast to the activated macrophages seen in the distal, degenerating segments 

(Chapter 5). The reasons for this different response in the proximal vs. distal segments are not 

entirely clear. However, rapid axolemmal closure of the proximal axonal segment may be a 

factor. Such rapid axolemmal resealing could prevent the influx of damaging extracellular 

molecules into the axonal segments, or alternatively it could inhibit the release of intra-axonal 

components into the extra-axonal environment, thus preserving the microenvironment. Further, 

the observed reorganization/repair of the proximal axonal segments, was not associated with 

sustained generation of myelin debris, a well-known stimulus for continued macrophage 

activation.  

 

2.4) The survival of retinal ganglion cells following TAI within the optic nerve 

The proximal axonal segment reorganization and repair/recovery described in the current 

study could also be partially related to the fact that axons maintained continuity with a viable 

neuronal cell body of origin within the RGCs. As described in Chapter 4, the multiple qualitative 

(TUNEL and Caspase-3 immunostaining) and quantitative (Brn3a immunostaining) as well as 
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ultrastructural studies performed in the current study did not demonstrate any evidence of RGC 

loss. Further their persistent expression of phospho-C-Jun, a marker associated with neuronal 

survival and axonal regeneration (Greer et al., 2011), was entirely consistent with RGC survival 

and the described proximal axonal repair/reorganization.  

Our description of RGCs survival post TAI within the employed optic nerve injury model 

is strikingly different from previous studies following other forms of optic nerve injury, which 

all were followed by significant RGC loss. We believe that this difference resides primarily in 

the model systems themselves. Our optic nerve TAI evoked a secondary process that involved 

progressive axonal swelling and delayed disconnection. Such delayed axonal injury was 

interspersed among other morphologically intact fibers. Thus, we believe that the more subtle 

and secondary progressive axonal injury occurring in our model of TAI, did not lead to the 

massive ionic disruption thereby proving supportive of RGC survival. In contrast to our model, 

optic nerve transection and crush evoked primary axonal injury, in which the axons disconnected 

immediately, with all the axonal fibers sustaining comparable injury and disconnection. Such 

primary axonal injury immediately exposed the injured axons to the extracellular environment, 

followed by an avalanche of sodium and calcium influx and the activation of proteases which 

then overwhelms cellular defense mechanisms leading to neuronal death (Emery et al., 1991, 

Lucas et al., 1990, Rosenberg et al., 2001, Strautman et al., 1990, Leybaert and de Hemptinne, 

1996).  

In addition to the differences between our optic nerve TAI and transection/crush injury 

models, our description of RGCs survival following TAI, is also dissimilar from the dramatic 

RGCs loss previously described following optic nerve stretch injury. In our cFPI model, the 

globe was shielded from injury. However, in the optic nerve stretch model, which employs a 
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sling at the posterior pole of the globe, direct injury to the retina and its vasculature most likely 

occurs at the moment of stretch, thereby contributing to retinal damage and the RGC loss. 

(Gennarelli et al., 1989; Maxwell et al., 1990; Maxwell and Graham, 1997; Saatman et al., 2003; 

Serbest et al., 2007; Sulaiman et al., 2010).   

Besides retinal sparing, our current TAI model offers additional differences from other 

models of injury involving either stretch or transection/crush injury. In our model, the TAI was 

generated approximately 1 mm proximal to the optic chiasm. In contrast, with optic nerve 

stretch, the axonal injury was found more rostrally, midway between the globe and the optic 

chiasm (Maxwell et al., 2003). Similarly, with the optic nerve crush or transection, the axonal 

injure was generated in the intraorbital segment, approximating the retina, wherein the neuronal 

cell bodies of the RGCs reside. This difference in the initial site of axonal injury, may influence 

neuronal fate in terms of either life or death. Evidence to support this premise is found in 

neocortical axonal and spinal cord transection studies, which demonstrate higher neuronal 

survival rates when the axotomy occurs more distant from its cell body of origin (Dale et al., 

1995; Liu et al., 2003). Thus, in our current study, the relative long distance between the initial 

site of TAI and the RGC could explain the enhanced RGCs survival relative to that seen 

following optic nerve stretch, transection or crush. 

The RGC survival described in the current study also bears similarities to the survival of 

neocortical neurons described following diffuse TAI (Greer et al., 2011; Lifshitz et al., 2007; 

Singleton et al., 2002). Utilizing the same rodent central fluid percussion injury model, Greer and 

colleagues demonstrated within the neocortex perisomatic diffuse traumatic axonal injury, that 

did not translate into cell death, but rather progressed to atrophy (Greer et al., 2011; Lifshitz et 

al., 2007; Singleton et al., 2002). Such surviving neocortical neurons upregulated the expression 
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of phospho-c-Jun (Greer et al., 2011). Similar to these studies following TAI in the neocortex, 

our surviving RGCs revealed persistent phospho-c-Jun expression up to 90 days following injury 

(Chapter 4), and the reorganization and attempt repair of the proximal axonal segments overtime 

(Chapter 3 and Chapter 5), consistent with other reports of the link of phospho-c-Jun  to neuronal 

survival, axonal sprouting and regeneration (Fitzgerald et al., 2009 and 2010; Greer et al., 2011; 

Herdegen et al., 1993; Hull and Bahr, 1994; Lu et al., 2003; Robinson, 1994 and 1995).  

Paradoxically, the activation of c-Jun has been related to not only axon regeneration but 

also neuronal death (Bessero et al., 2010; Biermann et al., 2011; Herdegen et al., 1997; Liu et al., 

2011; Raivich, 2008; Ribas et al., 2011; Sun et al., 2011). Genetic inactivation of c-Jun reduces 

axotomy-induced neuronal death but decreases the axon regenerative potential for surviving 

neurons (Raivich et al., 2004). Importantly, in our studies ATF-3, another transcription factor 

associated with axonal regeneration, was also upregulated in the RGCs at early time points post 

injury (data not shown), an observation again consistent with ATF-3 activation in the neocortical 

neurons following TAI (Greer et al, 2011). It has been demonstrated that ATF3 cooperate with c-

Jun to enhance neurite outgrowth (Pearson et al., 2003; Lindwall et al., 2004). Takeda (2000) 

observed the colocalization of ATF-3 with c-Jun mRNA 5 days after optic nerve crush injury, 

suggesting that the heterodimer formation of ATF-3 with C-Jun may support RGC survival and 

axonal regeneration.  It has also been demonstrated that ATF-3 binds to c-Jun,  and activates the 

expression of the anti-apoptotic factor - the heat shock protein 27 (Hsp27), which most likely 

activates Akt, accordingly probably inhibits apoptosis and promotes neuronal survival and nerve 

elongation (Brunet et al., 1999; Datta et al., 1997; Nakagomi et al., 2003). 

 

Other features of this model and their relevance to TAI 
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As described above, our current studies demonstrated that TBI-induced diffuse TAI 

within the optic nerve was not followed by dramatic RGC death/loss, but rather persistent RGC 

survival with the proximal axonal segment’s reorganization and its attempt to repair. This unique 

feature of optic nerve TAI is similar to brain neocortical TAI that is also not followed by 

neocortical neuron death, but rather atrophy and persistent expression of phospho-c-Jun and 

reactive axonal sprouting and elongation (Greer et al., 2011). In addition to this unique 

characteristic, current optic nerve TAI model also revealed transient blood-brain barrier 

disruption, local edema formation and its association with YFP fluorescence quenching in the 

acute phase post injury, and thereafter the closure of blood-brain barrier, the resolution of edema 

and the recovery of YFP fluorescent fibers at the chronic phase post injury.  

 

1) Transient blood-brain barrier disruption  

In concert with all the above abnormalities occurring in our optic nerve injury model was 

the occurrence of focal non-hemorrhagic blood-brain barrier (BBB) disruption and local edema 

formation which clearly approximated the site of ongoing axonal change and dieback. As noted 

in Chapter 3, we observed the extravasation of IgG within the optic nerve at 1 hour to 3 hours 

post injury. This occurred together  with the  expansion of the interstitial space at these early 

time points post injury (Chapter 3, Wang et al., 2011), suggesting local edema formation.  

Because this barrier perturbation occurred at the site of initial optic nerve axonal damage, this 

suggested that both events were triggered by the same forces of injury most likely maximally 

distorting the axons and microvessels at this point along the optic nerve’s length. By 7 and 28 

day post injury, the interstitial space had decreased in diameter, taking on a more control-like 

appearance, consistent with the resolution of edema at these later time points (Chapter 6). Such 
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traumatic barrier disruption described within the optic nerve is consistent with the brain 

parenchymal barrier disruption seen following fluid-percussion brain injury that has been linked 

to concomitant brain deformation and compression (Povlishock, et al., 1978, Kelley et al., 2007).  

 

2) Blood–brain barrier disruption and the retention of axons in the region of YFP 

fluorescence quenching.  

As noted, the observed blood-brain barrier disruption and edema formation in the current 

optic nerve model of diffuse TAI was not linked to the presence of either overt or petechial 

hemorrhage, suggesting a more subtle form of BBB perturbation. However, although subtle, this 

blood-brain barrier disruption did interfere with the detection of intact YFP expressing axons at 

the site of axonal injury via local fluorescent quenching (Chapter 3). In our study, the 

relationship between BBB disruption and fluorescent quenching was confirmed by the 

observation that those regions of local fluorescence loss mapped precisely to those zones of 

increased vascular permeability, as assessed by the passage of the endogenous immunoglobulin 

IgG (Chapter 3). We further confirmed this premise by utilizing antibodies targeting endogenous 

YFP independent of its fluorescent properties, a strategy which revealed in the same locus of 

fluorescent quenching the existence of intact/unaltered axons. These events suggested that the 

parallel movement of water and other molecules (e.g. ions) with the IgG participated in the 

fluorescent quenching, which confounded YFP use in our model system. Previously, although 

not well appreciated in the literature, it has been shown that water and solvent properties of water 

can lead to fluorescence quenching by multiple mechanisms, including but not limited to, 

hydrogen-bond interactions (Oshima et al., 2006), photoionization (Sadkowski and Fleming, 

1980), the transition to a close-lying energy level (Tobita et al., 2001), intersystem crossing 



www.manaraa.com

157 

 

(Seliskar and Brand, 1971), and specific solute–solvent interactions (Ebbesen and Ghiron, 1989). 

A recent study has also demonstrated that mild acidic conditions can alter the structural 

arrangement of yellow fluorescent protein, leading to fluorescence quenching (Hsu et al., 2010). 

Thus, it is not unreasonable to posit that either one or several of the above-described mechanisms 

result in fluorescence quenching in our current optic nerve injury model.  

 

3) The clearance of edema and the recovery of YFP fluorescent axons 

As noted, the observed blood-brain barrier disruption was transient, with the edema in the 

interstitial space of the optic nerve resolving overtime (Chapter 6), in a fashion similar to the 

transient brain edema described following weight drop TBI (Vink et al., 2003, Barzó et al., 

1997). Specifically, by diffusion-weighted imaging in the cerebral cortex, Barzó (1997) observed 

that water diffusion distance, predominantly associated with the formation of vasogenic edema, 

increased over 45minutes postinjury, and thereafter, decreased, reaching minimum values by 7 to 

14 days post injury. Such a vasogenic edema profile coincides with a process in which the BBB 

opens immediately following TBI with its subsequent closure moments later (Barzó et al., 1996).  

The observed rapid BBB closure most likely helped restore the microenvironment of both 

the injured and non-injured axonal segments, promoting the recovery of the YFP fluorescence of 

intact axonal fibers in the original region of fluorescence quenching. The closure of BBB most 

likely resulted in the resolution of edema via several mechanisms. It has been demonstrated that 

the extravasated plasma proteins, including but not limited to immunoglobulin, are rapidly taken 

up by the glial cells from the extracellular/interstitial space (Del Bigio et al., 2000; Jensen et al., 

1997), and degraded by glia, consequently attenuating the interstitial osmotic force that has 

induced edema (Betz et al., 1989; Klatzo et al., 1980). These processes are accompanied with the 
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closure/restoration of BBB, creating a permissive osmotic gradient, for water to move from the 

interstitial space back into the blood (Duvdevani et al., 1995).  

This resolution of water is most likely associated with the alteration of pH and other 

solvent content (e.g. ions and anions) in the microenvironment. Given the relationship between 

water, the acidic environment and fluorescence quenching described before, it is not 

unreasonable to assume that the resolution of water, the change of pH and other solvent could 

reverse fluorescence quenching. Previous studies have demonstrated that fluorescence quenching 

can be reversed by the removal of the quenching reagent (Chen et al., 1999), the addition of 

anions such as SO3
2-

 and PO4
3-

 (Xia et al., 2012), as well as the  oxidation of ions (Kress et a., 

2002). Whether these processes are involved in the recovery of YFP fluorescent fibers over time, 

or do other mechanisms participate in this reversal of YFP fluorescence quenching, requires 

further investigation. 

 

 

Future directions targeting therapeutic intervention and neuroplasticity 

 
In summary, our current studies demonstrate optic nerve TAI induced by TBI and 

provide new insight into the pathogenesis of diffuse traumatic axonal injury, particularly in terms 

of its progressive swelling, disconnection and dieback proximally and distally. This optic nerve 

TAI is also accompanied with diffuse traumatic axonal injury in the brain parenchyma, making 

our model comparable to human TBI, offering the potential for more rational preclinical drug 

screening to target TAI with the caveat that optic nerve axonal protection should translate into 

comparable axonal protection within the brain.  

 

1) Potential utility of the optic nerve TAI model for therapeutic screening  
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As noted above, a further benefit of our model system may reside in its usefulness for 

drug screening targeting axonal injury. The ability to treat the injured optic nerve via CSF and 

intraocular routes provides multiple portals for drugs that may not readily cross the BBB due to 

molecular weight, charge or protein binding. In this case, due to the bathing of the optic nerve by 

the CSF, neuroprotective drugs could be applied directly via intrathecal pathway, to obviate any 

difficulty sometimes encountered when penetrating blood-brain-barrier via intravenous or 

intraperitoneal routes (Gabathuler, 2010; Misra et al., 2003; Hossain et al., 2010; Okonkwo and 

Povlishock, 1999). Specifically, this model could allow us to reexamine various purported 

axonal protective drugs, such as poloxamer 188, mitochondrial permeability transition (MPT) 

inhibitors, calpain inhibitors, caspase inhibitors, calcineurin inhibitors and progesterone. For 

example, previous in vitro studies utilizing mechanical trauma to cultured neurons, have 

demonstrated that Poloxamer 188 promotes membrane resealing and reduces axonal injury 

(Kilinc et al., 2007, Maskarinec et al., 2005). Another axonal protective drug, Cyclosporine A, a 

mitochondrial permeability transition (MPT) inhibitor, has been shown to attenuate axonal 

damage following mild axonal stretch injury (Staal et al., 2007) while reducing rat traumatic 

axonal injury following experimental TBI (Okonkwo et al., 2003), and protecting compound 

action potentials in rats corpus callosum following experimental TBI (Colley et al., 2010). 

Further, the immunophilin ligand FK506, is not only able to reduce mitochondrial permeability 

transition (MPT), but also attenuate the activity of calcineurin. FK506 has been demonstrated to 

ameliorate axonal damage following diffuse TBI (Marmarou and Povlishock, 2006), and exert 

neuroprotective effect on both myelinated and unmyelinated axons (Reeves et al., 2007). 

Additionally, progesterone has been proven to have beneficial axonal protective effects in animal 

TBI studies and is now in Phase III ProTECT clinical trials which should be started within 4 
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hours of TBI (Espinoza and Wright, 2011; O’Connor et al., 2007; Hua et al., 2012). Besides 

these various drugs axonal protective effect, hypothermia has also been demonstrated to provide 

long term benefit to TAI if performed immediately post injury (Ma et al., 2009), and further the 

therapeutic window is effectively extended when the above described axonal protective drugs 

were combined with hypothermia (Fujita et al., 2011, Oda et al., 2011). Thus, it is possible to 

hypothesize that the therapeutic window of progesterone could also be prolonged when it is 

combined with hypothermia.  

Lastly, our current optic nerve TAI model should readily allow the incorporation of 

various genetic modifications. Specifically, gene transfection or knockout paradigm can be 

utilized to upregulate the intrinsic growth pathway to enhance axonal regeneration. For example, 

the inhibition of the PTEN (phosphatase and tensin homologue), the activation of mTOR 

(mammalian target of rapamycin) pathway, and the deletion of SOCS3 (suppressor of cytokine 

signaling) pathway have been proven effective to promote optic nerve axonal regeneration after 

optic nerve lesion (Park et al., 2008, Sun et al., 2011). The potential optic nerve axonal 

regeneration will reinnervate the downstream target including lateral geniculate nucleus, help 

recover the retinal-geniculate projection. 

 

2) Anterograde degeneration and potential downstream plasticity  

In addition to its therapeutic screening benefits, this optic nerve diffuse TAI model 

should also allow for the mapping of diffuse deafferentation of the downstream targets, such as 

the lateral geniculate nucleus (LGN) and superior colliculi, allowing a detailed assessment of the 

ensuing synaptic loss as well as any potential synaptic rearrangement. Previous studies have 

demonstrated following TAI a diffuse pattern of axon terminal degeneration and subsequent 



www.manaraa.com

161 

 

deafferentation in the cat dorsal lateral vestibular nucleus (Erb and Povlishock, 1991). 

Specifically, following TAI a marked reduction occurred in the perisomatic vestibular nuclear 

terminals (Erb and Povlishock, 1991). Interestingly, this axon terminal loss and synaptic 

deafferentation were followed by the return of some puncta/terminals in the deafferented somata 

by 60 days postinjury, with these terminals reaching 75% of control values by 6 months 

postinjury, and virtually recovering by the 7 to 12 month postinjury period (Erb and Povlishock, 

1991). These results suggest that mild to moderate TBI with its attendant TAI and associated 

diffuse deafferentation create a unique environment for adaptive synaptic recovery (Erb and 

Povlishock, 1991).  

Although these studies suggested adaptive recovery, it remains to be seen if other forms 

of TAI elicit comparable synaptic repair. To this end, our model of TAI in the optic nerve should 

allow for a critical assessment of any terminal/synaptic loss in its target LGN, while considering 

any potential for synaptic recovery therein. In this approach LM silver salt, immunocytochemical 

and TEM studies can be used to follow the specific patterns of synaptic loss occurring in the 

LGN overtime. Then once the pattern of deafferentation is established, contemporary tracer 

approach could be used to map the LGN’s synaptic reorganization and repair. 

Conceivably, the domains originally occupied by the degenerating axon terminals, will be 

replaced by the regenerating synapses in an adaptive manner. Via the intra- vitreous injection of 

the anterograde tracer-cholera toxin beta conjugated with different fluorescent probes, the tracer 

can be moved along the optic nerve overtime, with the downstream targets of the retinal-

projection mapped by the tracer. This technique should allow for a thorough assessment of 

downstream target deafferentation and potential synaptic plasticity following the diffuse TAI in 

the optic nerve.  
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Summary 

In summary, this optic nerve TAI following diffuse brain injury model provides unique 

insight into the pathogenesis of diffuse traumatic axonal injury, from its progressive swelling and 

disconnection, to rapid axonal dieback in both the proximal and distal direction. Overtime, the 

anterograde/downstream disconnected distal axonal segments underwent persisting degeneration. 

In contrast, the retrograde/upstream proximal  axonal segments transitioned rapidly to 

reorganization. Of note, this optic nerve TAI model was also accompanied with diffuse traumatic 

axonal injury in the brain parenchyma, indicating its utility for various treatment screening. In 

addition to these events, the optic nerve diffuse TAI was not followed by retrograde RGC death 

overtime. Moreover, these sustaining RGCs revealed the persistent expression of phospho-c-Jun, 

consistent with neuronal survival. Affirmaion that the RGCs survival was associated with the 

reorganization and potential repair of the proximal axonal segments, was provided by the finding 

that the microglia/macrophages maintained a resting state within this same segment. In contrast 

to these proximal axonal segment reorganization, the downstream distal disconnected axonal 

segment underwent continued dieback and degeneration, and spatial-temporally related to the 

activation of microglia/macrophage, suggesting that specific inhibition of microglia/macrophage 

would be a potential therapeutic strategy to prevent distal axonal degeneration and dieback. 

Collectively, we believe that our current model will allow the exploration of potential axonal 

regeneration and synaptic plasticity in future studies. 
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